|
- *> \brief <b> DGEESX computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors for GE matrices</b>
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download DGEESX + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgeesx.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgeesx.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgeesx.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DGEESX( JOBVS, SORT, SELECT, SENSE, N, A, LDA, SDIM,
- * WR, WI, VS, LDVS, RCONDE, RCONDV, WORK, LWORK,
- * IWORK, LIWORK, BWORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER JOBVS, SENSE, SORT
- * INTEGER INFO, LDA, LDVS, LIWORK, LWORK, N, SDIM
- * DOUBLE PRECISION RCONDE, RCONDV
- * ..
- * .. Array Arguments ..
- * LOGICAL BWORK( * )
- * INTEGER IWORK( * )
- * DOUBLE PRECISION A( LDA, * ), VS( LDVS, * ), WI( * ), WORK( * ),
- * $ WR( * )
- * ..
- * .. Function Arguments ..
- * LOGICAL SELECT
- * EXTERNAL SELECT
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DGEESX computes for an N-by-N real nonsymmetric matrix A, the
- *> eigenvalues, the real Schur form T, and, optionally, the matrix of
- *> Schur vectors Z. This gives the Schur factorization A = Z*T*(Z**T).
- *>
- *> Optionally, it also orders the eigenvalues on the diagonal of the
- *> real Schur form so that selected eigenvalues are at the top left;
- *> computes a reciprocal condition number for the average of the
- *> selected eigenvalues (RCONDE); and computes a reciprocal condition
- *> number for the right invariant subspace corresponding to the
- *> selected eigenvalues (RCONDV). The leading columns of Z form an
- *> orthonormal basis for this invariant subspace.
- *>
- *> For further explanation of the reciprocal condition numbers RCONDE
- *> and RCONDV, see Section 4.10 of the LAPACK Users' Guide (where
- *> these quantities are called s and sep respectively).
- *>
- *> A real matrix is in real Schur form if it is upper quasi-triangular
- *> with 1-by-1 and 2-by-2 blocks. 2-by-2 blocks will be standardized in
- *> the form
- *> [ a b ]
- *> [ c a ]
- *>
- *> where b*c < 0. The eigenvalues of such a block are a +- sqrt(bc).
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] JOBVS
- *> \verbatim
- *> JOBVS is CHARACTER*1
- *> = 'N': Schur vectors are not computed;
- *> = 'V': Schur vectors are computed.
- *> \endverbatim
- *>
- *> \param[in] SORT
- *> \verbatim
- *> SORT is CHARACTER*1
- *> Specifies whether or not to order the eigenvalues on the
- *> diagonal of the Schur form.
- *> = 'N': Eigenvalues are not ordered;
- *> = 'S': Eigenvalues are ordered (see SELECT).
- *> \endverbatim
- *>
- *> \param[in] SELECT
- *> \verbatim
- *> SELECT is a LOGICAL FUNCTION of two DOUBLE PRECISION arguments
- *> SELECT must be declared EXTERNAL in the calling subroutine.
- *> If SORT = 'S', SELECT is used to select eigenvalues to sort
- *> to the top left of the Schur form.
- *> If SORT = 'N', SELECT is not referenced.
- *> An eigenvalue WR(j)+sqrt(-1)*WI(j) is selected if
- *> SELECT(WR(j),WI(j)) is true; i.e., if either one of a
- *> complex conjugate pair of eigenvalues is selected, then both
- *> are. Note that a selected complex eigenvalue may no longer
- *> satisfy SELECT(WR(j),WI(j)) = .TRUE. after ordering, since
- *> ordering may change the value of complex eigenvalues
- *> (especially if the eigenvalue is ill-conditioned); in this
- *> case INFO may be set to N+3 (see INFO below).
- *> \endverbatim
- *>
- *> \param[in] SENSE
- *> \verbatim
- *> SENSE is CHARACTER*1
- *> Determines which reciprocal condition numbers are computed.
- *> = 'N': None are computed;
- *> = 'E': Computed for average of selected eigenvalues only;
- *> = 'V': Computed for selected right invariant subspace only;
- *> = 'B': Computed for both.
- *> If SENSE = 'E', 'V' or 'B', SORT must equal 'S'.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is DOUBLE PRECISION array, dimension (LDA, N)
- *> On entry, the N-by-N matrix A.
- *> On exit, A is overwritten by its real Schur form T.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] SDIM
- *> \verbatim
- *> SDIM is INTEGER
- *> If SORT = 'N', SDIM = 0.
- *> If SORT = 'S', SDIM = number of eigenvalues (after sorting)
- *> for which SELECT is true. (Complex conjugate
- *> pairs for which SELECT is true for either
- *> eigenvalue count as 2.)
- *> \endverbatim
- *>
- *> \param[out] WR
- *> \verbatim
- *> WR is DOUBLE PRECISION array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] WI
- *> \verbatim
- *> WI is DOUBLE PRECISION array, dimension (N)
- *> WR and WI contain the real and imaginary parts, respectively,
- *> of the computed eigenvalues, in the same order that they
- *> appear on the diagonal of the output Schur form T. Complex
- *> conjugate pairs of eigenvalues appear consecutively with the
- *> eigenvalue having the positive imaginary part first.
- *> \endverbatim
- *>
- *> \param[out] VS
- *> \verbatim
- *> VS is DOUBLE PRECISION array, dimension (LDVS,N)
- *> If JOBVS = 'V', VS contains the orthogonal matrix Z of Schur
- *> vectors.
- *> If JOBVS = 'N', VS is not referenced.
- *> \endverbatim
- *>
- *> \param[in] LDVS
- *> \verbatim
- *> LDVS is INTEGER
- *> The leading dimension of the array VS. LDVS >= 1, and if
- *> JOBVS = 'V', LDVS >= N.
- *> \endverbatim
- *>
- *> \param[out] RCONDE
- *> \verbatim
- *> RCONDE is DOUBLE PRECISION
- *> If SENSE = 'E' or 'B', RCONDE contains the reciprocal
- *> condition number for the average of the selected eigenvalues.
- *> Not referenced if SENSE = 'N' or 'V'.
- *> \endverbatim
- *>
- *> \param[out] RCONDV
- *> \verbatim
- *> RCONDV is DOUBLE PRECISION
- *> If SENSE = 'V' or 'B', RCONDV contains the reciprocal
- *> condition number for the selected right invariant subspace.
- *> Not referenced if SENSE = 'N' or 'E'.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
- *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The dimension of the array WORK. LWORK >= max(1,3*N).
- *> Also, if SENSE = 'E' or 'V' or 'B',
- *> LWORK >= N+2*SDIM*(N-SDIM), where SDIM is the number of
- *> selected eigenvalues computed by this routine. Note that
- *> N+2*SDIM*(N-SDIM) <= N+N*N/2. Note also that an error is only
- *> returned if LWORK < max(1,3*N), but if SENSE = 'E' or 'V' or
- *> 'B' this may not be large enough.
- *> For good performance, LWORK must generally be larger.
- *>
- *> If LWORK = -1, then a workspace query is assumed; the routine
- *> only calculates upper bounds on the optimal sizes of the
- *> arrays WORK and IWORK, returns these values as the first
- *> entries of the WORK and IWORK arrays, and no error messages
- *> related to LWORK or LIWORK are issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] IWORK
- *> \verbatim
- *> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
- *> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
- *> \endverbatim
- *>
- *> \param[in] LIWORK
- *> \verbatim
- *> LIWORK is INTEGER
- *> The dimension of the array IWORK.
- *> LIWORK >= 1; if SENSE = 'V' or 'B', LIWORK >= SDIM*(N-SDIM).
- *> Note that SDIM*(N-SDIM) <= N*N/4. Note also that an error is
- *> only returned if LIWORK < 1, but if SENSE = 'V' or 'B' this
- *> may not be large enough.
- *>
- *> If LIWORK = -1, then a workspace query is assumed; the
- *> routine only calculates upper bounds on the optimal sizes of
- *> the arrays WORK and IWORK, returns these values as the first
- *> entries of the WORK and IWORK arrays, and no error messages
- *> related to LWORK or LIWORK are issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] BWORK
- *> \verbatim
- *> BWORK is LOGICAL array, dimension (N)
- *> Not referenced if SORT = 'N'.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value.
- *> > 0: if INFO = i, and i is
- *> <= N: the QR algorithm failed to compute all the
- *> eigenvalues; elements 1:ILO-1 and i+1:N of WR and WI
- *> contain those eigenvalues which have converged; if
- *> JOBVS = 'V', VS contains the transformation which
- *> reduces A to its partially converged Schur form.
- *> = N+1: the eigenvalues could not be reordered because some
- *> eigenvalues were too close to separate (the problem
- *> is very ill-conditioned);
- *> = N+2: after reordering, roundoff changed values of some
- *> complex eigenvalues so that leading eigenvalues in
- *> the Schur form no longer satisfy SELECT=.TRUE. This
- *> could also be caused by underflow due to scaling.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup doubleGEeigen
- *
- * =====================================================================
- SUBROUTINE DGEESX( JOBVS, SORT, SELECT, SENSE, N, A, LDA, SDIM,
- $ WR, WI, VS, LDVS, RCONDE, RCONDV, WORK, LWORK,
- $ IWORK, LIWORK, BWORK, INFO )
- *
- * -- LAPACK driver routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER JOBVS, SENSE, SORT
- INTEGER INFO, LDA, LDVS, LIWORK, LWORK, N, SDIM
- DOUBLE PRECISION RCONDE, RCONDV
- * ..
- * .. Array Arguments ..
- LOGICAL BWORK( * )
- INTEGER IWORK( * )
- DOUBLE PRECISION A( LDA, * ), VS( LDVS, * ), WI( * ), WORK( * ),
- $ WR( * )
- * ..
- * .. Function Arguments ..
- LOGICAL SELECT
- EXTERNAL SELECT
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ZERO, ONE
- PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
- * ..
- * .. Local Scalars ..
- LOGICAL CURSL, LASTSL, LQUERY, LST2SL, SCALEA, WANTSB,
- $ WANTSE, WANTSN, WANTST, WANTSV, WANTVS
- INTEGER HSWORK, I, I1, I2, IBAL, ICOND, IERR, IEVAL,
- $ IHI, ILO, INXT, IP, ITAU, IWRK, LIWRK, LWRK,
- $ MAXWRK, MINWRK
- DOUBLE PRECISION ANRM, BIGNUM, CSCALE, EPS, SMLNUM
- * ..
- * .. Local Arrays ..
- DOUBLE PRECISION DUM( 1 )
- * ..
- * .. External Subroutines ..
- EXTERNAL DCOPY, DGEBAK, DGEBAL, DGEHRD, DHSEQR, DLACPY,
- $ DLASCL, DORGHR, DSWAP, DTRSEN, XERBLA
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- INTEGER ILAENV
- DOUBLE PRECISION DLAMCH, DLANGE
- EXTERNAL LSAME, ILAENV, DLABAD, DLAMCH, DLANGE
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, SQRT
- * ..
- * .. Executable Statements ..
- *
- * Test the input arguments
- *
- INFO = 0
- WANTVS = LSAME( JOBVS, 'V' )
- WANTST = LSAME( SORT, 'S' )
- WANTSN = LSAME( SENSE, 'N' )
- WANTSE = LSAME( SENSE, 'E' )
- WANTSV = LSAME( SENSE, 'V' )
- WANTSB = LSAME( SENSE, 'B' )
- LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
- *
- IF( ( .NOT.WANTVS ) .AND. ( .NOT.LSAME( JOBVS, 'N' ) ) ) THEN
- INFO = -1
- ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN
- INFO = -2
- ELSE IF( .NOT.( WANTSN .OR. WANTSE .OR. WANTSV .OR. WANTSB ) .OR.
- $ ( .NOT.WANTST .AND. .NOT.WANTSN ) ) THEN
- INFO = -4
- ELSE IF( N.LT.0 ) THEN
- INFO = -5
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -7
- ELSE IF( LDVS.LT.1 .OR. ( WANTVS .AND. LDVS.LT.N ) ) THEN
- INFO = -12
- END IF
- *
- * Compute workspace
- * (Note: Comments in the code beginning "RWorkspace:" describe the
- * minimal amount of real workspace needed at that point in the
- * code, as well as the preferred amount for good performance.
- * IWorkspace refers to integer workspace.
- * NB refers to the optimal block size for the immediately
- * following subroutine, as returned by ILAENV.
- * HSWORK refers to the workspace preferred by DHSEQR, as
- * calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
- * the worst case.
- * If SENSE = 'E', 'V' or 'B', then the amount of workspace needed
- * depends on SDIM, which is computed by the routine DTRSEN later
- * in the code.)
- *
- IF( INFO.EQ.0 ) THEN
- LIWRK = 1
- IF( N.EQ.0 ) THEN
- MINWRK = 1
- LWRK = 1
- ELSE
- MAXWRK = 2*N + N*ILAENV( 1, 'DGEHRD', ' ', N, 1, N, 0 )
- MINWRK = 3*N
- *
- CALL DHSEQR( 'S', JOBVS, N, 1, N, A, LDA, WR, WI, VS, LDVS,
- $ WORK, -1, IEVAL )
- HSWORK = INT( WORK( 1 ) )
- *
- IF( .NOT.WANTVS ) THEN
- MAXWRK = MAX( MAXWRK, N + HSWORK )
- ELSE
- MAXWRK = MAX( MAXWRK, 2*N + ( N - 1 )*ILAENV( 1,
- $ 'DORGHR', ' ', N, 1, N, -1 ) )
- MAXWRK = MAX( MAXWRK, N + HSWORK )
- END IF
- LWRK = MAXWRK
- IF( .NOT.WANTSN )
- $ LWRK = MAX( LWRK, N + ( N*N )/2 )
- IF( WANTSV .OR. WANTSB )
- $ LIWRK = ( N*N )/4
- END IF
- IWORK( 1 ) = LIWRK
- WORK( 1 ) = LWRK
- *
- IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
- INFO = -16
- ELSE IF( LIWORK.LT.1 .AND. .NOT.LQUERY ) THEN
- INFO = -18
- END IF
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'DGEESX', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 ) THEN
- SDIM = 0
- RETURN
- END IF
- *
- * Get machine constants
- *
- EPS = DLAMCH( 'P' )
- SMLNUM = DLAMCH( 'S' )
- BIGNUM = ONE / SMLNUM
- CALL DLABAD( SMLNUM, BIGNUM )
- SMLNUM = SQRT( SMLNUM ) / EPS
- BIGNUM = ONE / SMLNUM
- *
- * Scale A if max element outside range [SMLNUM,BIGNUM]
- *
- ANRM = DLANGE( 'M', N, N, A, LDA, DUM )
- SCALEA = .FALSE.
- IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
- SCALEA = .TRUE.
- CSCALE = SMLNUM
- ELSE IF( ANRM.GT.BIGNUM ) THEN
- SCALEA = .TRUE.
- CSCALE = BIGNUM
- END IF
- IF( SCALEA )
- $ CALL DLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR )
- *
- * Permute the matrix to make it more nearly triangular
- * (RWorkspace: need N)
- *
- IBAL = 1
- CALL DGEBAL( 'P', N, A, LDA, ILO, IHI, WORK( IBAL ), IERR )
- *
- * Reduce to upper Hessenberg form
- * (RWorkspace: need 3*N, prefer 2*N+N*NB)
- *
- ITAU = N + IBAL
- IWRK = N + ITAU
- CALL DGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
- $ LWORK-IWRK+1, IERR )
- *
- IF( WANTVS ) THEN
- *
- * Copy Householder vectors to VS
- *
- CALL DLACPY( 'L', N, N, A, LDA, VS, LDVS )
- *
- * Generate orthogonal matrix in VS
- * (RWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB)
- *
- CALL DORGHR( N, ILO, IHI, VS, LDVS, WORK( ITAU ), WORK( IWRK ),
- $ LWORK-IWRK+1, IERR )
- END IF
- *
- SDIM = 0
- *
- * Perform QR iteration, accumulating Schur vectors in VS if desired
- * (RWorkspace: need N+1, prefer N+HSWORK (see comments) )
- *
- IWRK = ITAU
- CALL DHSEQR( 'S', JOBVS, N, ILO, IHI, A, LDA, WR, WI, VS, LDVS,
- $ WORK( IWRK ), LWORK-IWRK+1, IEVAL )
- IF( IEVAL.GT.0 )
- $ INFO = IEVAL
- *
- * Sort eigenvalues if desired
- *
- IF( WANTST .AND. INFO.EQ.0 ) THEN
- IF( SCALEA ) THEN
- CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, WR, N, IERR )
- CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, WI, N, IERR )
- END IF
- DO 10 I = 1, N
- BWORK( I ) = SELECT( WR( I ), WI( I ) )
- 10 CONTINUE
- *
- * Reorder eigenvalues, transform Schur vectors, and compute
- * reciprocal condition numbers
- * (RWorkspace: if SENSE is not 'N', need N+2*SDIM*(N-SDIM)
- * otherwise, need N )
- * (IWorkspace: if SENSE is 'V' or 'B', need SDIM*(N-SDIM)
- * otherwise, need 0 )
- *
- CALL DTRSEN( SENSE, JOBVS, BWORK, N, A, LDA, VS, LDVS, WR, WI,
- $ SDIM, RCONDE, RCONDV, WORK( IWRK ), LWORK-IWRK+1,
- $ IWORK, LIWORK, ICOND )
- IF( .NOT.WANTSN )
- $ MAXWRK = MAX( MAXWRK, N+2*SDIM*( N-SDIM ) )
- IF( ICOND.EQ.-15 ) THEN
- *
- * Not enough real workspace
- *
- INFO = -16
- ELSE IF( ICOND.EQ.-17 ) THEN
- *
- * Not enough integer workspace
- *
- INFO = -18
- ELSE IF( ICOND.GT.0 ) THEN
- *
- * DTRSEN failed to reorder or to restore standard Schur form
- *
- INFO = ICOND + N
- END IF
- END IF
- *
- IF( WANTVS ) THEN
- *
- * Undo balancing
- * (RWorkspace: need N)
- *
- CALL DGEBAK( 'P', 'R', N, ILO, IHI, WORK( IBAL ), N, VS, LDVS,
- $ IERR )
- END IF
- *
- IF( SCALEA ) THEN
- *
- * Undo scaling for the Schur form of A
- *
- CALL DLASCL( 'H', 0, 0, CSCALE, ANRM, N, N, A, LDA, IERR )
- CALL DCOPY( N, A, LDA+1, WR, 1 )
- IF( ( WANTSV .OR. WANTSB ) .AND. INFO.EQ.0 ) THEN
- DUM( 1 ) = RCONDV
- CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, 1, 1, DUM, 1, IERR )
- RCONDV = DUM( 1 )
- END IF
- IF( CSCALE.EQ.SMLNUM ) THEN
- *
- * If scaling back towards underflow, adjust WI if an
- * offdiagonal element of a 2-by-2 block in the Schur form
- * underflows.
- *
- IF( IEVAL.GT.0 ) THEN
- I1 = IEVAL + 1
- I2 = IHI - 1
- CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, WI, N,
- $ IERR )
- ELSE IF( WANTST ) THEN
- I1 = 1
- I2 = N - 1
- ELSE
- I1 = ILO
- I2 = IHI - 1
- END IF
- INXT = I1 - 1
- DO 20 I = I1, I2
- IF( I.LT.INXT )
- $ GO TO 20
- IF( WI( I ).EQ.ZERO ) THEN
- INXT = I + 1
- ELSE
- IF( A( I+1, I ).EQ.ZERO ) THEN
- WI( I ) = ZERO
- WI( I+1 ) = ZERO
- ELSE IF( A( I+1, I ).NE.ZERO .AND. A( I, I+1 ).EQ.
- $ ZERO ) THEN
- WI( I ) = ZERO
- WI( I+1 ) = ZERO
- IF( I.GT.1 )
- $ CALL DSWAP( I-1, A( 1, I ), 1, A( 1, I+1 ), 1 )
- IF( N.GT.I+1 )
- $ CALL DSWAP( N-I-1, A( I, I+2 ), LDA,
- $ A( I+1, I+2 ), LDA )
- IF( WANTVS ) THEN
- CALL DSWAP( N, VS( 1, I ), 1, VS( 1, I+1 ), 1 )
- END IF
- A( I, I+1 ) = A( I+1, I )
- A( I+1, I ) = ZERO
- END IF
- INXT = I + 2
- END IF
- 20 CONTINUE
- END IF
- CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N-IEVAL, 1,
- $ WI( IEVAL+1 ), MAX( N-IEVAL, 1 ), IERR )
- END IF
- *
- IF( WANTST .AND. INFO.EQ.0 ) THEN
- *
- * Check if reordering successful
- *
- LASTSL = .TRUE.
- LST2SL = .TRUE.
- SDIM = 0
- IP = 0
- DO 30 I = 1, N
- CURSL = SELECT( WR( I ), WI( I ) )
- IF( WI( I ).EQ.ZERO ) THEN
- IF( CURSL )
- $ SDIM = SDIM + 1
- IP = 0
- IF( CURSL .AND. .NOT.LASTSL )
- $ INFO = N + 2
- ELSE
- IF( IP.EQ.1 ) THEN
- *
- * Last eigenvalue of conjugate pair
- *
- CURSL = CURSL .OR. LASTSL
- LASTSL = CURSL
- IF( CURSL )
- $ SDIM = SDIM + 2
- IP = -1
- IF( CURSL .AND. .NOT.LST2SL )
- $ INFO = N + 2
- ELSE
- *
- * First eigenvalue of conjugate pair
- *
- IP = 1
- END IF
- END IF
- LST2SL = LASTSL
- LASTSL = CURSL
- 30 CONTINUE
- END IF
- *
- WORK( 1 ) = MAXWRK
- IF( WANTSV .OR. WANTSB ) THEN
- IWORK( 1 ) = MAX( 1, SDIM*( N-SDIM ) )
- ELSE
- IWORK( 1 ) = 1
- END IF
- *
- RETURN
- *
- * End of DGEESX
- *
- END
|