|
- *> \brief \b CTREVC
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download CTREVC + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ctrevc.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ctrevc.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ctrevc.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CTREVC( SIDE, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,
- * LDVR, MM, M, WORK, RWORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER HOWMNY, SIDE
- * INTEGER INFO, LDT, LDVL, LDVR, M, MM, N
- * ..
- * .. Array Arguments ..
- * LOGICAL SELECT( * )
- * REAL RWORK( * )
- * COMPLEX T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ),
- * $ WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CTREVC computes some or all of the right and/or left eigenvectors of
- *> a complex upper triangular matrix T.
- *> Matrices of this type are produced by the Schur factorization of
- *> a complex general matrix: A = Q*T*Q**H, as computed by CHSEQR.
- *>
- *> The right eigenvector x and the left eigenvector y of T corresponding
- *> to an eigenvalue w are defined by:
- *>
- *> T*x = w*x, (y**H)*T = w*(y**H)
- *>
- *> where y**H denotes the conjugate transpose of the vector y.
- *> The eigenvalues are not input to this routine, but are read directly
- *> from the diagonal of T.
- *>
- *> This routine returns the matrices X and/or Y of right and left
- *> eigenvectors of T, or the products Q*X and/or Q*Y, where Q is an
- *> input matrix. If Q is the unitary factor that reduces a matrix A to
- *> Schur form T, then Q*X and Q*Y are the matrices of right and left
- *> eigenvectors of A.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] SIDE
- *> \verbatim
- *> SIDE is CHARACTER*1
- *> = 'R': compute right eigenvectors only;
- *> = 'L': compute left eigenvectors only;
- *> = 'B': compute both right and left eigenvectors.
- *> \endverbatim
- *>
- *> \param[in] HOWMNY
- *> \verbatim
- *> HOWMNY is CHARACTER*1
- *> = 'A': compute all right and/or left eigenvectors;
- *> = 'B': compute all right and/or left eigenvectors,
- *> backtransformed using the matrices supplied in
- *> VR and/or VL;
- *> = 'S': compute selected right and/or left eigenvectors,
- *> as indicated by the logical array SELECT.
- *> \endverbatim
- *>
- *> \param[in] SELECT
- *> \verbatim
- *> SELECT is LOGICAL array, dimension (N)
- *> If HOWMNY = 'S', SELECT specifies the eigenvectors to be
- *> computed.
- *> The eigenvector corresponding to the j-th eigenvalue is
- *> computed if SELECT(j) = .TRUE..
- *> Not referenced if HOWMNY = 'A' or 'B'.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix T. N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] T
- *> \verbatim
- *> T is COMPLEX array, dimension (LDT,N)
- *> The upper triangular matrix T. T is modified, but restored
- *> on exit.
- *> \endverbatim
- *>
- *> \param[in] LDT
- *> \verbatim
- *> LDT is INTEGER
- *> The leading dimension of the array T. LDT >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in,out] VL
- *> \verbatim
- *> VL is COMPLEX array, dimension (LDVL,MM)
- *> On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must
- *> contain an N-by-N matrix Q (usually the unitary matrix Q of
- *> Schur vectors returned by CHSEQR).
- *> On exit, if SIDE = 'L' or 'B', VL contains:
- *> if HOWMNY = 'A', the matrix Y of left eigenvectors of T;
- *> if HOWMNY = 'B', the matrix Q*Y;
- *> if HOWMNY = 'S', the left eigenvectors of T specified by
- *> SELECT, stored consecutively in the columns
- *> of VL, in the same order as their
- *> eigenvalues.
- *> Not referenced if SIDE = 'R'.
- *> \endverbatim
- *>
- *> \param[in] LDVL
- *> \verbatim
- *> LDVL is INTEGER
- *> The leading dimension of the array VL. LDVL >= 1, and if
- *> SIDE = 'L' or 'B', LDVL >= N.
- *> \endverbatim
- *>
- *> \param[in,out] VR
- *> \verbatim
- *> VR is COMPLEX array, dimension (LDVR,MM)
- *> On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must
- *> contain an N-by-N matrix Q (usually the unitary matrix Q of
- *> Schur vectors returned by CHSEQR).
- *> On exit, if SIDE = 'R' or 'B', VR contains:
- *> if HOWMNY = 'A', the matrix X of right eigenvectors of T;
- *> if HOWMNY = 'B', the matrix Q*X;
- *> if HOWMNY = 'S', the right eigenvectors of T specified by
- *> SELECT, stored consecutively in the columns
- *> of VR, in the same order as their
- *> eigenvalues.
- *> Not referenced if SIDE = 'L'.
- *> \endverbatim
- *>
- *> \param[in] LDVR
- *> \verbatim
- *> LDVR is INTEGER
- *> The leading dimension of the array VR. LDVR >= 1, and if
- *> SIDE = 'R' or 'B'; LDVR >= N.
- *> \endverbatim
- *>
- *> \param[in] MM
- *> \verbatim
- *> MM is INTEGER
- *> The number of columns in the arrays VL and/or VR. MM >= M.
- *> \endverbatim
- *>
- *> \param[out] M
- *> \verbatim
- *> M is INTEGER
- *> The number of columns in the arrays VL and/or VR actually
- *> used to store the eigenvectors. If HOWMNY = 'A' or 'B', M
- *> is set to N. Each selected eigenvector occupies one
- *> column.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX array, dimension (2*N)
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is REAL array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complexOTHERcomputational
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> The algorithm used in this program is basically backward (forward)
- *> substitution, with scaling to make the the code robust against
- *> possible overflow.
- *>
- *> Each eigenvector is normalized so that the element of largest
- *> magnitude has magnitude 1; here the magnitude of a complex number
- *> (x,y) is taken to be |x| + |y|.
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE CTREVC( SIDE, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,
- $ LDVR, MM, M, WORK, RWORK, INFO )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER HOWMNY, SIDE
- INTEGER INFO, LDT, LDVL, LDVR, M, MM, N
- * ..
- * .. Array Arguments ..
- LOGICAL SELECT( * )
- REAL RWORK( * )
- COMPLEX T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ),
- $ WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ZERO, ONE
- PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
- COMPLEX CMZERO, CMONE
- PARAMETER ( CMZERO = ( 0.0E+0, 0.0E+0 ),
- $ CMONE = ( 1.0E+0, 0.0E+0 ) )
- * ..
- * .. Local Scalars ..
- LOGICAL ALLV, BOTHV, LEFTV, OVER, RIGHTV, SOMEV
- INTEGER I, II, IS, J, K, KI
- REAL OVFL, REMAX, SCALE, SMIN, SMLNUM, ULP, UNFL
- COMPLEX CDUM
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- INTEGER ICAMAX
- REAL SCASUM, SLAMCH
- EXTERNAL LSAME, ICAMAX, SCASUM, SLAMCH
- * ..
- * .. External Subroutines ..
- EXTERNAL CCOPY, CGEMV, CLATRS, CSSCAL, SLABAD, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, AIMAG, CMPLX, CONJG, MAX, REAL
- * ..
- * .. Statement Functions ..
- REAL CABS1
- * ..
- * .. Statement Function definitions ..
- CABS1( CDUM ) = ABS( REAL( CDUM ) ) + ABS( AIMAG( CDUM ) )
- * ..
- * .. Executable Statements ..
- *
- * Decode and test the input parameters
- *
- BOTHV = LSAME( SIDE, 'B' )
- RIGHTV = LSAME( SIDE, 'R' ) .OR. BOTHV
- LEFTV = LSAME( SIDE, 'L' ) .OR. BOTHV
- *
- ALLV = LSAME( HOWMNY, 'A' )
- OVER = LSAME( HOWMNY, 'B' )
- SOMEV = LSAME( HOWMNY, 'S' )
- *
- * Set M to the number of columns required to store the selected
- * eigenvectors.
- *
- IF( SOMEV ) THEN
- M = 0
- DO 10 J = 1, N
- IF( SELECT( J ) )
- $ M = M + 1
- 10 CONTINUE
- ELSE
- M = N
- END IF
- *
- INFO = 0
- IF( .NOT.RIGHTV .AND. .NOT.LEFTV ) THEN
- INFO = -1
- ELSE IF( .NOT.ALLV .AND. .NOT.OVER .AND. .NOT.SOMEV ) THEN
- INFO = -2
- ELSE IF( N.LT.0 ) THEN
- INFO = -4
- ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
- INFO = -6
- ELSE IF( LDVL.LT.1 .OR. ( LEFTV .AND. LDVL.LT.N ) ) THEN
- INFO = -8
- ELSE IF( LDVR.LT.1 .OR. ( RIGHTV .AND. LDVR.LT.N ) ) THEN
- INFO = -10
- ELSE IF( MM.LT.M ) THEN
- INFO = -11
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'CTREVC', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible.
- *
- IF( N.EQ.0 )
- $ RETURN
- *
- * Set the constants to control overflow.
- *
- UNFL = SLAMCH( 'Safe minimum' )
- OVFL = ONE / UNFL
- CALL SLABAD( UNFL, OVFL )
- ULP = SLAMCH( 'Precision' )
- SMLNUM = UNFL*( N / ULP )
- *
- * Store the diagonal elements of T in working array WORK.
- *
- DO 20 I = 1, N
- WORK( I+N ) = T( I, I )
- 20 CONTINUE
- *
- * Compute 1-norm of each column of strictly upper triangular
- * part of T to control overflow in triangular solver.
- *
- RWORK( 1 ) = ZERO
- DO 30 J = 2, N
- RWORK( J ) = SCASUM( J-1, T( 1, J ), 1 )
- 30 CONTINUE
- *
- IF( RIGHTV ) THEN
- *
- * Compute right eigenvectors.
- *
- IS = M
- DO 80 KI = N, 1, -1
- *
- IF( SOMEV ) THEN
- IF( .NOT.SELECT( KI ) )
- $ GO TO 80
- END IF
- SMIN = MAX( ULP*( CABS1( T( KI, KI ) ) ), SMLNUM )
- *
- WORK( 1 ) = CMONE
- *
- * Form right-hand side.
- *
- DO 40 K = 1, KI - 1
- WORK( K ) = -T( K, KI )
- 40 CONTINUE
- *
- * Solve the triangular system:
- * (T(1:KI-1,1:KI-1) - T(KI,KI))*X = SCALE*WORK.
- *
- DO 50 K = 1, KI - 1
- T( K, K ) = T( K, K ) - T( KI, KI )
- IF( CABS1( T( K, K ) ).LT.SMIN )
- $ T( K, K ) = SMIN
- 50 CONTINUE
- *
- IF( KI.GT.1 ) THEN
- CALL CLATRS( 'Upper', 'No transpose', 'Non-unit', 'Y',
- $ KI-1, T, LDT, WORK( 1 ), SCALE, RWORK,
- $ INFO )
- WORK( KI ) = SCALE
- END IF
- *
- * Copy the vector x or Q*x to VR and normalize.
- *
- IF( .NOT.OVER ) THEN
- CALL CCOPY( KI, WORK( 1 ), 1, VR( 1, IS ), 1 )
- *
- II = ICAMAX( KI, VR( 1, IS ), 1 )
- REMAX = ONE / CABS1( VR( II, IS ) )
- CALL CSSCAL( KI, REMAX, VR( 1, IS ), 1 )
- *
- DO 60 K = KI + 1, N
- VR( K, IS ) = CMZERO
- 60 CONTINUE
- ELSE
- IF( KI.GT.1 )
- $ CALL CGEMV( 'N', N, KI-1, CMONE, VR, LDVR, WORK( 1 ),
- $ 1, CMPLX( SCALE ), VR( 1, KI ), 1 )
- *
- II = ICAMAX( N, VR( 1, KI ), 1 )
- REMAX = ONE / CABS1( VR( II, KI ) )
- CALL CSSCAL( N, REMAX, VR( 1, KI ), 1 )
- END IF
- *
- * Set back the original diagonal elements of T.
- *
- DO 70 K = 1, KI - 1
- T( K, K ) = WORK( K+N )
- 70 CONTINUE
- *
- IS = IS - 1
- 80 CONTINUE
- END IF
- *
- IF( LEFTV ) THEN
- *
- * Compute left eigenvectors.
- *
- IS = 1
- DO 130 KI = 1, N
- *
- IF( SOMEV ) THEN
- IF( .NOT.SELECT( KI ) )
- $ GO TO 130
- END IF
- SMIN = MAX( ULP*( CABS1( T( KI, KI ) ) ), SMLNUM )
- *
- WORK( N ) = CMONE
- *
- * Form right-hand side.
- *
- DO 90 K = KI + 1, N
- WORK( K ) = -CONJG( T( KI, K ) )
- 90 CONTINUE
- *
- * Solve the triangular system:
- * (T(KI+1:N,KI+1:N) - T(KI,KI))**H*X = SCALE*WORK.
- *
- DO 100 K = KI + 1, N
- T( K, K ) = T( K, K ) - T( KI, KI )
- IF( CABS1( T( K, K ) ).LT.SMIN )
- $ T( K, K ) = SMIN
- 100 CONTINUE
- *
- IF( KI.LT.N ) THEN
- CALL CLATRS( 'Upper', 'Conjugate transpose', 'Non-unit',
- $ 'Y', N-KI, T( KI+1, KI+1 ), LDT,
- $ WORK( KI+1 ), SCALE, RWORK, INFO )
- WORK( KI ) = SCALE
- END IF
- *
- * Copy the vector x or Q*x to VL and normalize.
- *
- IF( .NOT.OVER ) THEN
- CALL CCOPY( N-KI+1, WORK( KI ), 1, VL( KI, IS ), 1 )
- *
- II = ICAMAX( N-KI+1, VL( KI, IS ), 1 ) + KI - 1
- REMAX = ONE / CABS1( VL( II, IS ) )
- CALL CSSCAL( N-KI+1, REMAX, VL( KI, IS ), 1 )
- *
- DO 110 K = 1, KI - 1
- VL( K, IS ) = CMZERO
- 110 CONTINUE
- ELSE
- IF( KI.LT.N )
- $ CALL CGEMV( 'N', N, N-KI, CMONE, VL( 1, KI+1 ), LDVL,
- $ WORK( KI+1 ), 1, CMPLX( SCALE ),
- $ VL( 1, KI ), 1 )
- *
- II = ICAMAX( N, VL( 1, KI ), 1 )
- REMAX = ONE / CABS1( VL( II, KI ) )
- CALL CSSCAL( N, REMAX, VL( 1, KI ), 1 )
- END IF
- *
- * Set back the original diagonal elements of T.
- *
- DO 120 K = KI + 1, N
- T( K, K ) = WORK( K+N )
- 120 CONTINUE
- *
- IS = IS + 1
- 130 CONTINUE
- END IF
- *
- RETURN
- *
- * End of CTREVC
- *
- END
|