|
- *> \brief \b CLARZB applies a block reflector or its conjugate-transpose to a general matrix.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download CLARZB + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clarzb.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clarzb.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clarzb.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CLARZB( SIDE, TRANS, DIRECT, STOREV, M, N, K, L, V,
- * LDV, T, LDT, C, LDC, WORK, LDWORK )
- *
- * .. Scalar Arguments ..
- * CHARACTER DIRECT, SIDE, STOREV, TRANS
- * INTEGER K, L, LDC, LDT, LDV, LDWORK, M, N
- * ..
- * .. Array Arguments ..
- * COMPLEX C( LDC, * ), T( LDT, * ), V( LDV, * ),
- * $ WORK( LDWORK, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CLARZB applies a complex block reflector H or its transpose H**H
- *> to a complex distributed M-by-N C from the left or the right.
- *>
- *> Currently, only STOREV = 'R' and DIRECT = 'B' are supported.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] SIDE
- *> \verbatim
- *> SIDE is CHARACTER*1
- *> = 'L': apply H or H**H from the Left
- *> = 'R': apply H or H**H from the Right
- *> \endverbatim
- *>
- *> \param[in] TRANS
- *> \verbatim
- *> TRANS is CHARACTER*1
- *> = 'N': apply H (No transpose)
- *> = 'C': apply H**H (Conjugate transpose)
- *> \endverbatim
- *>
- *> \param[in] DIRECT
- *> \verbatim
- *> DIRECT is CHARACTER*1
- *> Indicates how H is formed from a product of elementary
- *> reflectors
- *> = 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet)
- *> = 'B': H = H(k) . . . H(2) H(1) (Backward)
- *> \endverbatim
- *>
- *> \param[in] STOREV
- *> \verbatim
- *> STOREV is CHARACTER*1
- *> Indicates how the vectors which define the elementary
- *> reflectors are stored:
- *> = 'C': Columnwise (not supported yet)
- *> = 'R': Rowwise
- *> \endverbatim
- *>
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the matrix C.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the matrix C.
- *> \endverbatim
- *>
- *> \param[in] K
- *> \verbatim
- *> K is INTEGER
- *> The order of the matrix T (= the number of elementary
- *> reflectors whose product defines the block reflector).
- *> \endverbatim
- *>
- *> \param[in] L
- *> \verbatim
- *> L is INTEGER
- *> The number of columns of the matrix V containing the
- *> meaningful part of the Householder reflectors.
- *> If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
- *> \endverbatim
- *>
- *> \param[in] V
- *> \verbatim
- *> V is COMPLEX array, dimension (LDV,NV).
- *> If STOREV = 'C', NV = K; if STOREV = 'R', NV = L.
- *> \endverbatim
- *>
- *> \param[in] LDV
- *> \verbatim
- *> LDV is INTEGER
- *> The leading dimension of the array V.
- *> If STOREV = 'C', LDV >= L; if STOREV = 'R', LDV >= K.
- *> \endverbatim
- *>
- *> \param[in] T
- *> \verbatim
- *> T is COMPLEX array, dimension (LDT,K)
- *> The triangular K-by-K matrix T in the representation of the
- *> block reflector.
- *> \endverbatim
- *>
- *> \param[in] LDT
- *> \verbatim
- *> LDT is INTEGER
- *> The leading dimension of the array T. LDT >= K.
- *> \endverbatim
- *>
- *> \param[in,out] C
- *> \verbatim
- *> C is COMPLEX array, dimension (LDC,N)
- *> On entry, the M-by-N matrix C.
- *> On exit, C is overwritten by H*C or H**H*C or C*H or C*H**H.
- *> \endverbatim
- *>
- *> \param[in] LDC
- *> \verbatim
- *> LDC is INTEGER
- *> The leading dimension of the array C. LDC >= max(1,M).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX array, dimension (LDWORK,K)
- *> \endverbatim
- *>
- *> \param[in] LDWORK
- *> \verbatim
- *> LDWORK is INTEGER
- *> The leading dimension of the array WORK.
- *> If SIDE = 'L', LDWORK >= max(1,N);
- *> if SIDE = 'R', LDWORK >= max(1,M).
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complexOTHERcomputational
- *
- *> \par Contributors:
- * ==================
- *>
- *> A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE CLARZB( SIDE, TRANS, DIRECT, STOREV, M, N, K, L, V,
- $ LDV, T, LDT, C, LDC, WORK, LDWORK )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER DIRECT, SIDE, STOREV, TRANS
- INTEGER K, L, LDC, LDT, LDV, LDWORK, M, N
- * ..
- * .. Array Arguments ..
- COMPLEX C( LDC, * ), T( LDT, * ), V( LDV, * ),
- $ WORK( LDWORK, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- COMPLEX ONE
- PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) )
- * ..
- * .. Local Scalars ..
- CHARACTER TRANST
- INTEGER I, INFO, J
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. External Subroutines ..
- EXTERNAL CCOPY, CGEMM, CLACGV, CTRMM, XERBLA
- * ..
- * .. Executable Statements ..
- *
- * Quick return if possible
- *
- IF( M.LE.0 .OR. N.LE.0 )
- $ RETURN
- *
- * Check for currently supported options
- *
- INFO = 0
- IF( .NOT.LSAME( DIRECT, 'B' ) ) THEN
- INFO = -3
- ELSE IF( .NOT.LSAME( STOREV, 'R' ) ) THEN
- INFO = -4
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'CLARZB', -INFO )
- RETURN
- END IF
- *
- IF( LSAME( TRANS, 'N' ) ) THEN
- TRANST = 'C'
- ELSE
- TRANST = 'N'
- END IF
- *
- IF( LSAME( SIDE, 'L' ) ) THEN
- *
- * Form H * C or H**H * C
- *
- * W( 1:n, 1:k ) = C( 1:k, 1:n )**H
- *
- DO 10 J = 1, K
- CALL CCOPY( N, C( J, 1 ), LDC, WORK( 1, J ), 1 )
- 10 CONTINUE
- *
- * W( 1:n, 1:k ) = W( 1:n, 1:k ) + ...
- * C( m-l+1:m, 1:n )**H * V( 1:k, 1:l )**T
- *
- IF( L.GT.0 )
- $ CALL CGEMM( 'Transpose', 'Conjugate transpose', N, K, L,
- $ ONE, C( M-L+1, 1 ), LDC, V, LDV, ONE, WORK,
- $ LDWORK )
- *
- * W( 1:n, 1:k ) = W( 1:n, 1:k ) * T**T or W( 1:m, 1:k ) * T
- *
- CALL CTRMM( 'Right', 'Lower', TRANST, 'Non-unit', N, K, ONE, T,
- $ LDT, WORK, LDWORK )
- *
- * C( 1:k, 1:n ) = C( 1:k, 1:n ) - W( 1:n, 1:k )**H
- *
- DO 30 J = 1, N
- DO 20 I = 1, K
- C( I, J ) = C( I, J ) - WORK( J, I )
- 20 CONTINUE
- 30 CONTINUE
- *
- * C( m-l+1:m, 1:n ) = C( m-l+1:m, 1:n ) - ...
- * V( 1:k, 1:l )**H * W( 1:n, 1:k )**H
- *
- IF( L.GT.0 )
- $ CALL CGEMM( 'Transpose', 'Transpose', L, N, K, -ONE, V, LDV,
- $ WORK, LDWORK, ONE, C( M-L+1, 1 ), LDC )
- *
- ELSE IF( LSAME( SIDE, 'R' ) ) THEN
- *
- * Form C * H or C * H**H
- *
- * W( 1:m, 1:k ) = C( 1:m, 1:k )
- *
- DO 40 J = 1, K
- CALL CCOPY( M, C( 1, J ), 1, WORK( 1, J ), 1 )
- 40 CONTINUE
- *
- * W( 1:m, 1:k ) = W( 1:m, 1:k ) + ...
- * C( 1:m, n-l+1:n ) * V( 1:k, 1:l )**H
- *
- IF( L.GT.0 )
- $ CALL CGEMM( 'No transpose', 'Transpose', M, K, L, ONE,
- $ C( 1, N-L+1 ), LDC, V, LDV, ONE, WORK, LDWORK )
- *
- * W( 1:m, 1:k ) = W( 1:m, 1:k ) * conjg( T ) or
- * W( 1:m, 1:k ) * T**H
- *
- DO 50 J = 1, K
- CALL CLACGV( K-J+1, T( J, J ), 1 )
- 50 CONTINUE
- CALL CTRMM( 'Right', 'Lower', TRANS, 'Non-unit', M, K, ONE, T,
- $ LDT, WORK, LDWORK )
- DO 60 J = 1, K
- CALL CLACGV( K-J+1, T( J, J ), 1 )
- 60 CONTINUE
- *
- * C( 1:m, 1:k ) = C( 1:m, 1:k ) - W( 1:m, 1:k )
- *
- DO 80 J = 1, K
- DO 70 I = 1, M
- C( I, J ) = C( I, J ) - WORK( I, J )
- 70 CONTINUE
- 80 CONTINUE
- *
- * C( 1:m, n-l+1:n ) = C( 1:m, n-l+1:n ) - ...
- * W( 1:m, 1:k ) * conjg( V( 1:k, 1:l ) )
- *
- DO 90 J = 1, L
- CALL CLACGV( K, V( 1, J ), 1 )
- 90 CONTINUE
- IF( L.GT.0 )
- $ CALL CGEMM( 'No transpose', 'No transpose', M, L, K, -ONE,
- $ WORK, LDWORK, V, LDV, ONE, C( 1, N-L+1 ), LDC )
- DO 100 J = 1, L
- CALL CLACGV( K, V( 1, J ), 1 )
- 100 CONTINUE
- *
- END IF
- *
- RETURN
- *
- * End of CLARZB
- *
- END
|