|
- *> \brief \b CLARGV generates a vector of plane rotations with real cosines and complex sines.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download CLARGV + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clargv.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clargv.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clargv.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CLARGV( N, X, INCX, Y, INCY, C, INCC )
- *
- * .. Scalar Arguments ..
- * INTEGER INCC, INCX, INCY, N
- * ..
- * .. Array Arguments ..
- * REAL C( * )
- * COMPLEX X( * ), Y( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CLARGV generates a vector of complex plane rotations with real
- *> cosines, determined by elements of the complex vectors x and y.
- *> For i = 1,2,...,n
- *>
- *> ( c(i) s(i) ) ( x(i) ) = ( r(i) )
- *> ( -conjg(s(i)) c(i) ) ( y(i) ) = ( 0 )
- *>
- *> where c(i)**2 + ABS(s(i))**2 = 1
- *>
- *> The following conventions are used (these are the same as in CLARTG,
- *> but differ from the BLAS1 routine CROTG):
- *> If y(i)=0, then c(i)=1 and s(i)=0.
- *> If x(i)=0, then c(i)=0 and s(i) is chosen so that r(i) is real.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of plane rotations to be generated.
- *> \endverbatim
- *>
- *> \param[in,out] X
- *> \verbatim
- *> X is COMPLEX array, dimension (1+(N-1)*INCX)
- *> On entry, the vector x.
- *> On exit, x(i) is overwritten by r(i), for i = 1,...,n.
- *> \endverbatim
- *>
- *> \param[in] INCX
- *> \verbatim
- *> INCX is INTEGER
- *> The increment between elements of X. INCX > 0.
- *> \endverbatim
- *>
- *> \param[in,out] Y
- *> \verbatim
- *> Y is COMPLEX array, dimension (1+(N-1)*INCY)
- *> On entry, the vector y.
- *> On exit, the sines of the plane rotations.
- *> \endverbatim
- *>
- *> \param[in] INCY
- *> \verbatim
- *> INCY is INTEGER
- *> The increment between elements of Y. INCY > 0.
- *> \endverbatim
- *>
- *> \param[out] C
- *> \verbatim
- *> C is REAL array, dimension (1+(N-1)*INCC)
- *> The cosines of the plane rotations.
- *> \endverbatim
- *>
- *> \param[in] INCC
- *> \verbatim
- *> INCC is INTEGER
- *> The increment between elements of C. INCC > 0.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complexOTHERauxiliary
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> 6-6-96 - Modified with a new algorithm by W. Kahan and J. Demmel
- *>
- *> This version has a few statements commented out for thread safety
- *> (machine parameters are computed on each entry). 10 feb 03, SJH.
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE CLARGV( N, X, INCX, Y, INCY, C, INCC )
- *
- * -- LAPACK auxiliary routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER INCC, INCX, INCY, N
- * ..
- * .. Array Arguments ..
- REAL C( * )
- COMPLEX X( * ), Y( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL TWO, ONE, ZERO
- PARAMETER ( TWO = 2.0E+0, ONE = 1.0E+0, ZERO = 0.0E+0 )
- COMPLEX CZERO
- PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ) )
- * ..
- * .. Local Scalars ..
- * LOGICAL FIRST
- INTEGER COUNT, I, IC, IX, IY, J
- REAL CS, D, DI, DR, EPS, F2, F2S, G2, G2S, SAFMIN,
- $ SAFMN2, SAFMX2, SCALE
- COMPLEX F, FF, FS, G, GS, R, SN
- * ..
- * .. External Functions ..
- REAL SLAMCH, SLAPY2
- EXTERNAL SLAMCH, SLAPY2
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, AIMAG, CMPLX, CONJG, INT, LOG, MAX, REAL,
- $ SQRT
- * ..
- * .. Statement Functions ..
- REAL ABS1, ABSSQ
- * ..
- * .. Save statement ..
- * SAVE FIRST, SAFMX2, SAFMIN, SAFMN2
- * ..
- * .. Data statements ..
- * DATA FIRST / .TRUE. /
- * ..
- * .. Statement Function definitions ..
- ABS1( FF ) = MAX( ABS( REAL( FF ) ), ABS( AIMAG( FF ) ) )
- ABSSQ( FF ) = REAL( FF )**2 + AIMAG( FF )**2
- * ..
- * .. Executable Statements ..
- *
- * IF( FIRST ) THEN
- * FIRST = .FALSE.
- SAFMIN = SLAMCH( 'S' )
- EPS = SLAMCH( 'E' )
- SAFMN2 = SLAMCH( 'B' )**INT( LOG( SAFMIN / EPS ) /
- $ LOG( SLAMCH( 'B' ) ) / TWO )
- SAFMX2 = ONE / SAFMN2
- * END IF
- IX = 1
- IY = 1
- IC = 1
- DO 60 I = 1, N
- F = X( IX )
- G = Y( IY )
- *
- * Use identical algorithm as in CLARTG
- *
- SCALE = MAX( ABS1( F ), ABS1( G ) )
- FS = F
- GS = G
- COUNT = 0
- IF( SCALE.GE.SAFMX2 ) THEN
- 10 CONTINUE
- COUNT = COUNT + 1
- FS = FS*SAFMN2
- GS = GS*SAFMN2
- SCALE = SCALE*SAFMN2
- IF( SCALE.GE.SAFMX2 .AND. COUNT .LT. 20 )
- $ GO TO 10
- ELSE IF( SCALE.LE.SAFMN2 ) THEN
- IF( G.EQ.CZERO ) THEN
- CS = ONE
- SN = CZERO
- R = F
- GO TO 50
- END IF
- 20 CONTINUE
- COUNT = COUNT - 1
- FS = FS*SAFMX2
- GS = GS*SAFMX2
- SCALE = SCALE*SAFMX2
- IF( SCALE.LE.SAFMN2 )
- $ GO TO 20
- END IF
- F2 = ABSSQ( FS )
- G2 = ABSSQ( GS )
- IF( F2.LE.MAX( G2, ONE )*SAFMIN ) THEN
- *
- * This is a rare case: F is very small.
- *
- IF( F.EQ.CZERO ) THEN
- CS = ZERO
- R = SLAPY2( REAL( G ), AIMAG( G ) )
- * Do complex/real division explicitly with two real
- * divisions
- D = SLAPY2( REAL( GS ), AIMAG( GS ) )
- SN = CMPLX( REAL( GS ) / D, -AIMAG( GS ) / D )
- GO TO 50
- END IF
- F2S = SLAPY2( REAL( FS ), AIMAG( FS ) )
- * G2 and G2S are accurate
- * G2 is at least SAFMIN, and G2S is at least SAFMN2
- G2S = SQRT( G2 )
- * Error in CS from underflow in F2S is at most
- * UNFL / SAFMN2 .lt. sqrt(UNFL*EPS) .lt. EPS
- * If MAX(G2,ONE)=G2, then F2 .lt. G2*SAFMIN,
- * and so CS .lt. sqrt(SAFMIN)
- * If MAX(G2,ONE)=ONE, then F2 .lt. SAFMIN
- * and so CS .lt. sqrt(SAFMIN)/SAFMN2 = sqrt(EPS)
- * Therefore, CS = F2S/G2S / sqrt( 1 + (F2S/G2S)**2 ) = F2S/G2S
- CS = F2S / G2S
- * Make sure abs(FF) = 1
- * Do complex/real division explicitly with 2 real divisions
- IF( ABS1( F ).GT.ONE ) THEN
- D = SLAPY2( REAL( F ), AIMAG( F ) )
- FF = CMPLX( REAL( F ) / D, AIMAG( F ) / D )
- ELSE
- DR = SAFMX2*REAL( F )
- DI = SAFMX2*AIMAG( F )
- D = SLAPY2( DR, DI )
- FF = CMPLX( DR / D, DI / D )
- END IF
- SN = FF*CMPLX( REAL( GS ) / G2S, -AIMAG( GS ) / G2S )
- R = CS*F + SN*G
- ELSE
- *
- * This is the most common case.
- * Neither F2 nor F2/G2 are less than SAFMIN
- * F2S cannot overflow, and it is accurate
- *
- F2S = SQRT( ONE+G2 / F2 )
- * Do the F2S(real)*FS(complex) multiply with two real
- * multiplies
- R = CMPLX( F2S*REAL( FS ), F2S*AIMAG( FS ) )
- CS = ONE / F2S
- D = F2 + G2
- * Do complex/real division explicitly with two real divisions
- SN = CMPLX( REAL( R ) / D, AIMAG( R ) / D )
- SN = SN*CONJG( GS )
- IF( COUNT.NE.0 ) THEN
- IF( COUNT.GT.0 ) THEN
- DO 30 J = 1, COUNT
- R = R*SAFMX2
- 30 CONTINUE
- ELSE
- DO 40 J = 1, -COUNT
- R = R*SAFMN2
- 40 CONTINUE
- END IF
- END IF
- END IF
- 50 CONTINUE
- C( IC ) = CS
- Y( IY ) = SN
- X( IX ) = R
- IC = IC + INCC
- IY = IY + INCY
- IX = IX + INCX
- 60 CONTINUE
- RETURN
- *
- * End of CLARGV
- *
- END
|