|
- *> \brief \b CLANTP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a triangular matrix supplied in packed form.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download CLANTP + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clantp.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clantp.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clantp.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * REAL FUNCTION CLANTP( NORM, UPLO, DIAG, N, AP, WORK )
- *
- * .. Scalar Arguments ..
- * CHARACTER DIAG, NORM, UPLO
- * INTEGER N
- * ..
- * .. Array Arguments ..
- * REAL WORK( * )
- * COMPLEX AP( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CLANTP returns the value of the one norm, or the Frobenius norm, or
- *> the infinity norm, or the element of largest absolute value of a
- *> triangular matrix A, supplied in packed form.
- *> \endverbatim
- *>
- *> \return CLANTP
- *> \verbatim
- *>
- *> CLANTP = ( max(abs(A(i,j))), NORM = 'M' or 'm'
- *> (
- *> ( norm1(A), NORM = '1', 'O' or 'o'
- *> (
- *> ( normI(A), NORM = 'I' or 'i'
- *> (
- *> ( normF(A), NORM = 'F', 'f', 'E' or 'e'
- *>
- *> where norm1 denotes the one norm of a matrix (maximum column sum),
- *> normI denotes the infinity norm of a matrix (maximum row sum) and
- *> normF denotes the Frobenius norm of a matrix (square root of sum of
- *> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] NORM
- *> \verbatim
- *> NORM is CHARACTER*1
- *> Specifies the value to be returned in CLANTP as described
- *> above.
- *> \endverbatim
- *>
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> Specifies whether the matrix A is upper or lower triangular.
- *> = 'U': Upper triangular
- *> = 'L': Lower triangular
- *> \endverbatim
- *>
- *> \param[in] DIAG
- *> \verbatim
- *> DIAG is CHARACTER*1
- *> Specifies whether or not the matrix A is unit triangular.
- *> = 'N': Non-unit triangular
- *> = 'U': Unit triangular
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0. When N = 0, CLANTP is
- *> set to zero.
- *> \endverbatim
- *>
- *> \param[in] AP
- *> \verbatim
- *> AP is COMPLEX array, dimension (N*(N+1)/2)
- *> The upper or lower triangular matrix A, packed columnwise in
- *> a linear array. The j-th column of A is stored in the array
- *> AP as follows:
- *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
- *> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
- *> Note that when DIAG = 'U', the elements of the array AP
- *> corresponding to the diagonal elements of the matrix A are
- *> not referenced, but are assumed to be one.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is REAL array, dimension (MAX(1,LWORK)),
- *> where LWORK >= N when NORM = 'I'; otherwise, WORK is not
- *> referenced.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complexOTHERauxiliary
- *
- * =====================================================================
- REAL FUNCTION CLANTP( NORM, UPLO, DIAG, N, AP, WORK )
- *
- * -- LAPACK auxiliary routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER DIAG, NORM, UPLO
- INTEGER N
- * ..
- * .. Array Arguments ..
- REAL WORK( * )
- COMPLEX AP( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ONE, ZERO
- PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL UDIAG
- INTEGER I, J, K
- REAL SCALE, SUM, VALUE
- * ..
- * .. External Functions ..
- LOGICAL LSAME, SISNAN
- EXTERNAL LSAME, SISNAN
- * ..
- * .. External Subroutines ..
- EXTERNAL CLASSQ
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, SQRT
- * ..
- * .. Executable Statements ..
- *
- IF( N.EQ.0 ) THEN
- VALUE = ZERO
- ELSE IF( LSAME( NORM, 'M' ) ) THEN
- *
- * Find max(abs(A(i,j))).
- *
- K = 1
- IF( LSAME( DIAG, 'U' ) ) THEN
- VALUE = ONE
- IF( LSAME( UPLO, 'U' ) ) THEN
- DO 20 J = 1, N
- DO 10 I = K, K + J - 2
- SUM = ABS( AP( I ) )
- IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
- 10 CONTINUE
- K = K + J
- 20 CONTINUE
- ELSE
- DO 40 J = 1, N
- DO 30 I = K + 1, K + N - J
- SUM = ABS( AP( I ) )
- IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
- 30 CONTINUE
- K = K + N - J + 1
- 40 CONTINUE
- END IF
- ELSE
- VALUE = ZERO
- IF( LSAME( UPLO, 'U' ) ) THEN
- DO 60 J = 1, N
- DO 50 I = K, K + J - 1
- SUM = ABS( AP( I ) )
- IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
- 50 CONTINUE
- K = K + J
- 60 CONTINUE
- ELSE
- DO 80 J = 1, N
- DO 70 I = K, K + N - J
- SUM = ABS( AP( I ) )
- IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
- 70 CONTINUE
- K = K + N - J + 1
- 80 CONTINUE
- END IF
- END IF
- ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
- *
- * Find norm1(A).
- *
- VALUE = ZERO
- K = 1
- UDIAG = LSAME( DIAG, 'U' )
- IF( LSAME( UPLO, 'U' ) ) THEN
- DO 110 J = 1, N
- IF( UDIAG ) THEN
- SUM = ONE
- DO 90 I = K, K + J - 2
- SUM = SUM + ABS( AP( I ) )
- 90 CONTINUE
- ELSE
- SUM = ZERO
- DO 100 I = K, K + J - 1
- SUM = SUM + ABS( AP( I ) )
- 100 CONTINUE
- END IF
- K = K + J
- IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
- 110 CONTINUE
- ELSE
- DO 140 J = 1, N
- IF( UDIAG ) THEN
- SUM = ONE
- DO 120 I = K + 1, K + N - J
- SUM = SUM + ABS( AP( I ) )
- 120 CONTINUE
- ELSE
- SUM = ZERO
- DO 130 I = K, K + N - J
- SUM = SUM + ABS( AP( I ) )
- 130 CONTINUE
- END IF
- K = K + N - J + 1
- IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
- 140 CONTINUE
- END IF
- ELSE IF( LSAME( NORM, 'I' ) ) THEN
- *
- * Find normI(A).
- *
- K = 1
- IF( LSAME( UPLO, 'U' ) ) THEN
- IF( LSAME( DIAG, 'U' ) ) THEN
- DO 150 I = 1, N
- WORK( I ) = ONE
- 150 CONTINUE
- DO 170 J = 1, N
- DO 160 I = 1, J - 1
- WORK( I ) = WORK( I ) + ABS( AP( K ) )
- K = K + 1
- 160 CONTINUE
- K = K + 1
- 170 CONTINUE
- ELSE
- DO 180 I = 1, N
- WORK( I ) = ZERO
- 180 CONTINUE
- DO 200 J = 1, N
- DO 190 I = 1, J
- WORK( I ) = WORK( I ) + ABS( AP( K ) )
- K = K + 1
- 190 CONTINUE
- 200 CONTINUE
- END IF
- ELSE
- IF( LSAME( DIAG, 'U' ) ) THEN
- DO 210 I = 1, N
- WORK( I ) = ONE
- 210 CONTINUE
- DO 230 J = 1, N
- K = K + 1
- DO 220 I = J + 1, N
- WORK( I ) = WORK( I ) + ABS( AP( K ) )
- K = K + 1
- 220 CONTINUE
- 230 CONTINUE
- ELSE
- DO 240 I = 1, N
- WORK( I ) = ZERO
- 240 CONTINUE
- DO 260 J = 1, N
- DO 250 I = J, N
- WORK( I ) = WORK( I ) + ABS( AP( K ) )
- K = K + 1
- 250 CONTINUE
- 260 CONTINUE
- END IF
- END IF
- VALUE = ZERO
- DO 270 I = 1, N
- SUM = WORK( I )
- IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
- 270 CONTINUE
- ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
- *
- * Find normF(A).
- *
- IF( LSAME( UPLO, 'U' ) ) THEN
- IF( LSAME( DIAG, 'U' ) ) THEN
- SCALE = ONE
- SUM = N
- K = 2
- DO 280 J = 2, N
- CALL CLASSQ( J-1, AP( K ), 1, SCALE, SUM )
- K = K + J
- 280 CONTINUE
- ELSE
- SCALE = ZERO
- SUM = ONE
- K = 1
- DO 290 J = 1, N
- CALL CLASSQ( J, AP( K ), 1, SCALE, SUM )
- K = K + J
- 290 CONTINUE
- END IF
- ELSE
- IF( LSAME( DIAG, 'U' ) ) THEN
- SCALE = ONE
- SUM = N
- K = 2
- DO 300 J = 1, N - 1
- CALL CLASSQ( N-J, AP( K ), 1, SCALE, SUM )
- K = K + N - J + 1
- 300 CONTINUE
- ELSE
- SCALE = ZERO
- SUM = ONE
- K = 1
- DO 310 J = 1, N
- CALL CLASSQ( N-J+1, AP( K ), 1, SCALE, SUM )
- K = K + N - J + 1
- 310 CONTINUE
- END IF
- END IF
- VALUE = SCALE*SQRT( SUM )
- END IF
- *
- CLANTP = VALUE
- RETURN
- *
- * End of CLANTP
- *
- END
|