|
- *> \brief \b CLAESY computes the eigenvalues and eigenvectors of a 2-by-2 complex symmetric matrix.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download CLAESY + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/claesy.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/claesy.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/claesy.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CLAESY( A, B, C, RT1, RT2, EVSCAL, CS1, SN1 )
- *
- * .. Scalar Arguments ..
- * COMPLEX A, B, C, CS1, EVSCAL, RT1, RT2, SN1
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CLAESY computes the eigendecomposition of a 2-by-2 symmetric matrix
- *> ( ( A, B );( B, C ) )
- *> provided the norm of the matrix of eigenvectors is larger than
- *> some threshold value.
- *>
- *> RT1 is the eigenvalue of larger absolute value, and RT2 of
- *> smaller absolute value. If the eigenvectors are computed, then
- *> on return ( CS1, SN1 ) is the unit eigenvector for RT1, hence
- *>
- *> [ CS1 SN1 ] . [ A B ] . [ CS1 -SN1 ] = [ RT1 0 ]
- *> [ -SN1 CS1 ] [ B C ] [ SN1 CS1 ] [ 0 RT2 ]
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] A
- *> \verbatim
- *> A is COMPLEX
- *> The ( 1, 1 ) element of input matrix.
- *> \endverbatim
- *>
- *> \param[in] B
- *> \verbatim
- *> B is COMPLEX
- *> The ( 1, 2 ) element of input matrix. The ( 2, 1 ) element
- *> is also given by B, since the 2-by-2 matrix is symmetric.
- *> \endverbatim
- *>
- *> \param[in] C
- *> \verbatim
- *> C is COMPLEX
- *> The ( 2, 2 ) element of input matrix.
- *> \endverbatim
- *>
- *> \param[out] RT1
- *> \verbatim
- *> RT1 is COMPLEX
- *> The eigenvalue of larger modulus.
- *> \endverbatim
- *>
- *> \param[out] RT2
- *> \verbatim
- *> RT2 is COMPLEX
- *> The eigenvalue of smaller modulus.
- *> \endverbatim
- *>
- *> \param[out] EVSCAL
- *> \verbatim
- *> EVSCAL is COMPLEX
- *> The complex value by which the eigenvector matrix was scaled
- *> to make it orthonormal. If EVSCAL is zero, the eigenvectors
- *> were not computed. This means one of two things: the 2-by-2
- *> matrix could not be diagonalized, or the norm of the matrix
- *> of eigenvectors before scaling was larger than the threshold
- *> value THRESH (set below).
- *> \endverbatim
- *>
- *> \param[out] CS1
- *> \verbatim
- *> CS1 is COMPLEX
- *> \endverbatim
- *>
- *> \param[out] SN1
- *> \verbatim
- *> SN1 is COMPLEX
- *> If EVSCAL .NE. 0, ( CS1, SN1 ) is the unit right eigenvector
- *> for RT1.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complexSYauxiliary
- *
- * =====================================================================
- SUBROUTINE CLAESY( A, B, C, RT1, RT2, EVSCAL, CS1, SN1 )
- *
- * -- LAPACK auxiliary routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- COMPLEX A, B, C, CS1, EVSCAL, RT1, RT2, SN1
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ZERO
- PARAMETER ( ZERO = 0.0E0 )
- REAL ONE
- PARAMETER ( ONE = 1.0E0 )
- COMPLEX CONE
- PARAMETER ( CONE = ( 1.0E0, 0.0E0 ) )
- REAL HALF
- PARAMETER ( HALF = 0.5E0 )
- REAL THRESH
- PARAMETER ( THRESH = 0.1E0 )
- * ..
- * .. Local Scalars ..
- REAL BABS, EVNORM, TABS, Z
- COMPLEX S, T, TMP
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, MAX, SQRT
- * ..
- * .. Executable Statements ..
- *
- *
- * Special case: The matrix is actually diagonal.
- * To avoid divide by zero later, we treat this case separately.
- *
- IF( ABS( B ).EQ.ZERO ) THEN
- RT1 = A
- RT2 = C
- IF( ABS( RT1 ).LT.ABS( RT2 ) ) THEN
- TMP = RT1
- RT1 = RT2
- RT2 = TMP
- CS1 = ZERO
- SN1 = ONE
- ELSE
- CS1 = ONE
- SN1 = ZERO
- END IF
- ELSE
- *
- * Compute the eigenvalues and eigenvectors.
- * The characteristic equation is
- * lambda **2 - (A+C) lambda + (A*C - B*B)
- * and we solve it using the quadratic formula.
- *
- S = ( A+C )*HALF
- T = ( A-C )*HALF
- *
- * Take the square root carefully to avoid over/under flow.
- *
- BABS = ABS( B )
- TABS = ABS( T )
- Z = MAX( BABS, TABS )
- IF( Z.GT.ZERO )
- $ T = Z*SQRT( ( T / Z )**2+( B / Z )**2 )
- *
- * Compute the two eigenvalues. RT1 and RT2 are exchanged
- * if necessary so that RT1 will have the greater magnitude.
- *
- RT1 = S + T
- RT2 = S - T
- IF( ABS( RT1 ).LT.ABS( RT2 ) ) THEN
- TMP = RT1
- RT1 = RT2
- RT2 = TMP
- END IF
- *
- * Choose CS1 = 1 and SN1 to satisfy the first equation, then
- * scale the components of this eigenvector so that the matrix
- * of eigenvectors X satisfies X * X**T = I . (No scaling is
- * done if the norm of the eigenvalue matrix is less than THRESH.)
- *
- SN1 = ( RT1-A ) / B
- TABS = ABS( SN1 )
- IF( TABS.GT.ONE ) THEN
- T = TABS*SQRT( ( ONE / TABS )**2+( SN1 / TABS )**2 )
- ELSE
- T = SQRT( CONE+SN1*SN1 )
- END IF
- EVNORM = ABS( T )
- IF( EVNORM.GE.THRESH ) THEN
- EVSCAL = CONE / T
- CS1 = EVSCAL
- SN1 = SN1*EVSCAL
- ELSE
- EVSCAL = ZERO
- END IF
- END IF
- RETURN
- *
- * End of CLAESY
- *
- END
|