|
- *> \brief \b CLA_GBRCOND_X computes the infinity norm condition number of op(A)*diag(x) for general banded matrices.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download CLA_GBRCOND_X + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cla_gbrcond_x.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cla_gbrcond_x.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cla_gbrcond_x.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * REAL FUNCTION CLA_GBRCOND_X( TRANS, N, KL, KU, AB, LDAB, AFB,
- * LDAFB, IPIV, X, INFO, WORK, RWORK )
- *
- * .. Scalar Arguments ..
- * CHARACTER TRANS
- * INTEGER N, KL, KU, KD, KE, LDAB, LDAFB, INFO
- * ..
- * .. Array Arguments ..
- * INTEGER IPIV( * )
- * COMPLEX AB( LDAB, * ), AFB( LDAFB, * ), WORK( * ),
- * $ X( * )
- * REAL RWORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CLA_GBRCOND_X Computes the infinity norm condition number of
- *> op(A) * diag(X) where X is a COMPLEX vector.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] TRANS
- *> \verbatim
- *> TRANS is CHARACTER*1
- *> Specifies the form of the system of equations:
- *> = 'N': A * X = B (No transpose)
- *> = 'T': A**T * X = B (Transpose)
- *> = 'C': A**H * X = B (Conjugate Transpose = Transpose)
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of linear equations, i.e., the order of the
- *> matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] KL
- *> \verbatim
- *> KL is INTEGER
- *> The number of subdiagonals within the band of A. KL >= 0.
- *> \endverbatim
- *>
- *> \param[in] KU
- *> \verbatim
- *> KU is INTEGER
- *> The number of superdiagonals within the band of A. KU >= 0.
- *> \endverbatim
- *>
- *> \param[in] AB
- *> \verbatim
- *> AB is COMPLEX array, dimension (LDAB,N)
- *> On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
- *> The j-th column of A is stored in the j-th column of the
- *> array AB as follows:
- *> AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)
- *> \endverbatim
- *>
- *> \param[in] LDAB
- *> \verbatim
- *> LDAB is INTEGER
- *> The leading dimension of the array AB. LDAB >= KL+KU+1.
- *> \endverbatim
- *>
- *> \param[in] AFB
- *> \verbatim
- *> AFB is COMPLEX array, dimension (LDAFB,N)
- *> Details of the LU factorization of the band matrix A, as
- *> computed by CGBTRF. U is stored as an upper triangular
- *> band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1,
- *> and the multipliers used during the factorization are stored
- *> in rows KL+KU+2 to 2*KL+KU+1.
- *> \endverbatim
- *>
- *> \param[in] LDAFB
- *> \verbatim
- *> LDAFB is INTEGER
- *> The leading dimension of the array AFB. LDAFB >= 2*KL+KU+1.
- *> \endverbatim
- *>
- *> \param[in] IPIV
- *> \verbatim
- *> IPIV is INTEGER array, dimension (N)
- *> The pivot indices from the factorization A = P*L*U
- *> as computed by CGBTRF; row i of the matrix was interchanged
- *> with row IPIV(i).
- *> \endverbatim
- *>
- *> \param[in] X
- *> \verbatim
- *> X is COMPLEX array, dimension (N)
- *> The vector X in the formula op(A) * diag(X).
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: Successful exit.
- *> i > 0: The ith argument is invalid.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX array, dimension (2*N).
- *> Workspace.
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is REAL array, dimension (N).
- *> Workspace.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complexGBcomputational
- *
- * =====================================================================
- REAL FUNCTION CLA_GBRCOND_X( TRANS, N, KL, KU, AB, LDAB, AFB,
- $ LDAFB, IPIV, X, INFO, WORK, RWORK )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER TRANS
- INTEGER N, KL, KU, KD, KE, LDAB, LDAFB, INFO
- * ..
- * .. Array Arguments ..
- INTEGER IPIV( * )
- COMPLEX AB( LDAB, * ), AFB( LDAFB, * ), WORK( * ),
- $ X( * )
- REAL RWORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Local Scalars ..
- LOGICAL NOTRANS
- INTEGER KASE, I, J
- REAL AINVNM, ANORM, TMP
- COMPLEX ZDUM
- * ..
- * .. Local Arrays ..
- INTEGER ISAVE( 3 )
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. External Subroutines ..
- EXTERNAL CLACN2, CGBTRS, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, MAX
- * ..
- * .. Statement Functions ..
- REAL CABS1
- * ..
- * .. Statement Function Definitions ..
- CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )
- * ..
- * .. Executable Statements ..
- *
- CLA_GBRCOND_X = 0.0E+0
- *
- INFO = 0
- NOTRANS = LSAME( TRANS, 'N' )
- IF ( .NOT. NOTRANS .AND. .NOT. LSAME(TRANS, 'T') .AND. .NOT.
- $ LSAME( TRANS, 'C' ) ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( KL.LT.0 .OR. KL.GT.N-1 ) THEN
- INFO = -3
- ELSE IF( KU.LT.0 .OR. KU.GT.N-1 ) THEN
- INFO = -4
- ELSE IF( LDAB.LT.KL+KU+1 ) THEN
- INFO = -6
- ELSE IF( LDAFB.LT.2*KL+KU+1 ) THEN
- INFO = -8
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'CLA_GBRCOND_X', -INFO )
- RETURN
- END IF
- *
- * Compute norm of op(A)*op2(C).
- *
- KD = KU + 1
- KE = KL + 1
- ANORM = 0.0
- IF ( NOTRANS ) THEN
- DO I = 1, N
- TMP = 0.0E+0
- DO J = MAX( I-KL, 1 ), MIN( I+KU, N )
- TMP = TMP + CABS1( AB( KD+I-J, J) * X( J ) )
- END DO
- RWORK( I ) = TMP
- ANORM = MAX( ANORM, TMP )
- END DO
- ELSE
- DO I = 1, N
- TMP = 0.0E+0
- DO J = MAX( I-KL, 1 ), MIN( I+KU, N )
- TMP = TMP + CABS1( AB( KE-I+J, I ) * X( J ) )
- END DO
- RWORK( I ) = TMP
- ANORM = MAX( ANORM, TMP )
- END DO
- END IF
- *
- * Quick return if possible.
- *
- IF( N.EQ.0 ) THEN
- CLA_GBRCOND_X = 1.0E+0
- RETURN
- ELSE IF( ANORM .EQ. 0.0E+0 ) THEN
- RETURN
- END IF
- *
- * Estimate the norm of inv(op(A)).
- *
- AINVNM = 0.0E+0
- *
- KASE = 0
- 10 CONTINUE
- CALL CLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE )
- IF( KASE.NE.0 ) THEN
- IF( KASE.EQ.2 ) THEN
- *
- * Multiply by R.
- *
- DO I = 1, N
- WORK( I ) = WORK( I ) * RWORK( I )
- END DO
- *
- IF ( NOTRANS ) THEN
- CALL CGBTRS( 'No transpose', N, KL, KU, 1, AFB, LDAFB,
- $ IPIV, WORK, N, INFO )
- ELSE
- CALL CGBTRS( 'Conjugate transpose', N, KL, KU, 1, AFB,
- $ LDAFB, IPIV, WORK, N, INFO )
- ENDIF
- *
- * Multiply by inv(X).
- *
- DO I = 1, N
- WORK( I ) = WORK( I ) / X( I )
- END DO
- ELSE
- *
- * Multiply by inv(X**H).
- *
- DO I = 1, N
- WORK( I ) = WORK( I ) / X( I )
- END DO
- *
- IF ( NOTRANS ) THEN
- CALL CGBTRS( 'Conjugate transpose', N, KL, KU, 1, AFB,
- $ LDAFB, IPIV, WORK, N, INFO )
- ELSE
- CALL CGBTRS( 'No transpose', N, KL, KU, 1, AFB, LDAFB,
- $ IPIV, WORK, N, INFO )
- END IF
- *
- * Multiply by R.
- *
- DO I = 1, N
- WORK( I ) = WORK( I ) * RWORK( I )
- END DO
- END IF
- GO TO 10
- END IF
- *
- * Compute the estimate of the reciprocal condition number.
- *
- IF( AINVNM .NE. 0.0E+0 )
- $ CLA_GBRCOND_X = 1.0E+0 / AINVNM
- *
- RETURN
- *
- * End of CLA_GBRCOND_X
- *
- END
|