|
- *> \brief \b CHPTRD
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download CHPTRD + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chptrd.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chptrd.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chptrd.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CHPTRD( UPLO, N, AP, D, E, TAU, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER UPLO
- * INTEGER INFO, N
- * ..
- * .. Array Arguments ..
- * REAL D( * ), E( * )
- * COMPLEX AP( * ), TAU( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CHPTRD reduces a complex Hermitian matrix A stored in packed form to
- *> real symmetric tridiagonal form T by a unitary similarity
- *> transformation: Q**H * A * Q = T.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> = 'U': Upper triangle of A is stored;
- *> = 'L': Lower triangle of A is stored.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] AP
- *> \verbatim
- *> AP is COMPLEX array, dimension (N*(N+1)/2)
- *> On entry, the upper or lower triangle of the Hermitian matrix
- *> A, packed columnwise in a linear array. The j-th column of A
- *> is stored in the array AP as follows:
- *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
- *> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
- *> On exit, if UPLO = 'U', the diagonal and first superdiagonal
- *> of A are overwritten by the corresponding elements of the
- *> tridiagonal matrix T, and the elements above the first
- *> superdiagonal, with the array TAU, represent the unitary
- *> matrix Q as a product of elementary reflectors; if UPLO
- *> = 'L', the diagonal and first subdiagonal of A are over-
- *> written by the corresponding elements of the tridiagonal
- *> matrix T, and the elements below the first subdiagonal, with
- *> the array TAU, represent the unitary matrix Q as a product
- *> of elementary reflectors. See Further Details.
- *> \endverbatim
- *>
- *> \param[out] D
- *> \verbatim
- *> D is REAL array, dimension (N)
- *> The diagonal elements of the tridiagonal matrix T:
- *> D(i) = A(i,i).
- *> \endverbatim
- *>
- *> \param[out] E
- *> \verbatim
- *> E is REAL array, dimension (N-1)
- *> The off-diagonal elements of the tridiagonal matrix T:
- *> E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
- *> \endverbatim
- *>
- *> \param[out] TAU
- *> \verbatim
- *> TAU is COMPLEX array, dimension (N-1)
- *> The scalar factors of the elementary reflectors (see Further
- *> Details).
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complexOTHERcomputational
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> If UPLO = 'U', the matrix Q is represented as a product of elementary
- *> reflectors
- *>
- *> Q = H(n-1) . . . H(2) H(1).
- *>
- *> Each H(i) has the form
- *>
- *> H(i) = I - tau * v * v**H
- *>
- *> where tau is a complex scalar, and v is a complex vector with
- *> v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in AP,
- *> overwriting A(1:i-1,i+1), and tau is stored in TAU(i).
- *>
- *> If UPLO = 'L', the matrix Q is represented as a product of elementary
- *> reflectors
- *>
- *> Q = H(1) H(2) . . . H(n-1).
- *>
- *> Each H(i) has the form
- *>
- *> H(i) = I - tau * v * v**H
- *>
- *> where tau is a complex scalar, and v is a complex vector with
- *> v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in AP,
- *> overwriting A(i+2:n,i), and tau is stored in TAU(i).
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE CHPTRD( UPLO, N, AP, D, E, TAU, INFO )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER UPLO
- INTEGER INFO, N
- * ..
- * .. Array Arguments ..
- REAL D( * ), E( * )
- COMPLEX AP( * ), TAU( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- COMPLEX ONE, ZERO, HALF
- PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ),
- $ ZERO = ( 0.0E+0, 0.0E+0 ),
- $ HALF = ( 0.5E+0, 0.0E+0 ) )
- * ..
- * .. Local Scalars ..
- LOGICAL UPPER
- INTEGER I, I1, I1I1, II
- COMPLEX ALPHA, TAUI
- * ..
- * .. External Subroutines ..
- EXTERNAL CAXPY, CHPMV, CHPR2, CLARFG, XERBLA
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- COMPLEX CDOTC
- EXTERNAL LSAME, CDOTC
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC REAL
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters
- *
- INFO = 0
- UPPER = LSAME( UPLO, 'U' )
- IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'CHPTRD', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.LE.0 )
- $ RETURN
- *
- IF( UPPER ) THEN
- *
- * Reduce the upper triangle of A.
- * I1 is the index in AP of A(1,I+1).
- *
- I1 = N*( N-1 ) / 2 + 1
- AP( I1+N-1 ) = REAL( AP( I1+N-1 ) )
- DO 10 I = N - 1, 1, -1
- *
- * Generate elementary reflector H(i) = I - tau * v * v**H
- * to annihilate A(1:i-1,i+1)
- *
- ALPHA = AP( I1+I-1 )
- CALL CLARFG( I, ALPHA, AP( I1 ), 1, TAUI )
- E( I ) = REAL( ALPHA )
- *
- IF( TAUI.NE.ZERO ) THEN
- *
- * Apply H(i) from both sides to A(1:i,1:i)
- *
- AP( I1+I-1 ) = ONE
- *
- * Compute y := tau * A * v storing y in TAU(1:i)
- *
- CALL CHPMV( UPLO, I, TAUI, AP, AP( I1 ), 1, ZERO, TAU,
- $ 1 )
- *
- * Compute w := y - 1/2 * tau * (y**H *v) * v
- *
- ALPHA = -HALF*TAUI*CDOTC( I, TAU, 1, AP( I1 ), 1 )
- CALL CAXPY( I, ALPHA, AP( I1 ), 1, TAU, 1 )
- *
- * Apply the transformation as a rank-2 update:
- * A := A - v * w**H - w * v**H
- *
- CALL CHPR2( UPLO, I, -ONE, AP( I1 ), 1, TAU, 1, AP )
- *
- END IF
- AP( I1+I-1 ) = E( I )
- D( I+1 ) = REAL( AP( I1+I ) )
- TAU( I ) = TAUI
- I1 = I1 - I
- 10 CONTINUE
- D( 1 ) = REAL( AP( 1 ) )
- ELSE
- *
- * Reduce the lower triangle of A. II is the index in AP of
- * A(i,i) and I1I1 is the index of A(i+1,i+1).
- *
- II = 1
- AP( 1 ) = REAL( AP( 1 ) )
- DO 20 I = 1, N - 1
- I1I1 = II + N - I + 1
- *
- * Generate elementary reflector H(i) = I - tau * v * v**H
- * to annihilate A(i+2:n,i)
- *
- ALPHA = AP( II+1 )
- CALL CLARFG( N-I, ALPHA, AP( II+2 ), 1, TAUI )
- E( I ) = REAL( ALPHA )
- *
- IF( TAUI.NE.ZERO ) THEN
- *
- * Apply H(i) from both sides to A(i+1:n,i+1:n)
- *
- AP( II+1 ) = ONE
- *
- * Compute y := tau * A * v storing y in TAU(i:n-1)
- *
- CALL CHPMV( UPLO, N-I, TAUI, AP( I1I1 ), AP( II+1 ), 1,
- $ ZERO, TAU( I ), 1 )
- *
- * Compute w := y - 1/2 * tau * (y**H *v) * v
- *
- ALPHA = -HALF*TAUI*CDOTC( N-I, TAU( I ), 1, AP( II+1 ),
- $ 1 )
- CALL CAXPY( N-I, ALPHA, AP( II+1 ), 1, TAU( I ), 1 )
- *
- * Apply the transformation as a rank-2 update:
- * A := A - v * w**H - w * v**H
- *
- CALL CHPR2( UPLO, N-I, -ONE, AP( II+1 ), 1, TAU( I ), 1,
- $ AP( I1I1 ) )
- *
- END IF
- AP( II+1 ) = E( I )
- D( I ) = REAL( AP( II ) )
- TAU( I ) = TAUI
- II = I1I1
- 20 CONTINUE
- D( N ) = REAL( AP( II ) )
- END IF
- *
- RETURN
- *
- * End of CHPTRD
- *
- END
|