|
- *> \brief \b CHPGVX
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download CHPGVX + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chpgvx.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chpgvx.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chpgvx.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CHPGVX( ITYPE, JOBZ, RANGE, UPLO, N, AP, BP, VL, VU,
- * IL, IU, ABSTOL, M, W, Z, LDZ, WORK, RWORK,
- * IWORK, IFAIL, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER JOBZ, RANGE, UPLO
- * INTEGER IL, INFO, ITYPE, IU, LDZ, M, N
- * REAL ABSTOL, VL, VU
- * ..
- * .. Array Arguments ..
- * INTEGER IFAIL( * ), IWORK( * )
- * REAL RWORK( * ), W( * )
- * COMPLEX AP( * ), BP( * ), WORK( * ), Z( LDZ, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CHPGVX computes selected eigenvalues and, optionally, eigenvectors
- *> of a complex generalized Hermitian-definite eigenproblem, of the form
- *> A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and
- *> B are assumed to be Hermitian, stored in packed format, and B is also
- *> positive definite. Eigenvalues and eigenvectors can be selected by
- *> specifying either a range of values or a range of indices for the
- *> desired eigenvalues.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] ITYPE
- *> \verbatim
- *> ITYPE is INTEGER
- *> Specifies the problem type to be solved:
- *> = 1: A*x = (lambda)*B*x
- *> = 2: A*B*x = (lambda)*x
- *> = 3: B*A*x = (lambda)*x
- *> \endverbatim
- *>
- *> \param[in] JOBZ
- *> \verbatim
- *> JOBZ is CHARACTER*1
- *> = 'N': Compute eigenvalues only;
- *> = 'V': Compute eigenvalues and eigenvectors.
- *> \endverbatim
- *>
- *> \param[in] RANGE
- *> \verbatim
- *> RANGE is CHARACTER*1
- *> = 'A': all eigenvalues will be found;
- *> = 'V': all eigenvalues in the half-open interval (VL,VU]
- *> will be found;
- *> = 'I': the IL-th through IU-th eigenvalues will be found.
- *> \endverbatim
- *>
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> = 'U': Upper triangles of A and B are stored;
- *> = 'L': Lower triangles of A and B are stored.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrices A and B. N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] AP
- *> \verbatim
- *> AP is COMPLEX array, dimension (N*(N+1)/2)
- *> On entry, the upper or lower triangle of the Hermitian matrix
- *> A, packed columnwise in a linear array. The j-th column of A
- *> is stored in the array AP as follows:
- *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
- *> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
- *>
- *> On exit, the contents of AP are destroyed.
- *> \endverbatim
- *>
- *> \param[in,out] BP
- *> \verbatim
- *> BP is COMPLEX array, dimension (N*(N+1)/2)
- *> On entry, the upper or lower triangle of the Hermitian matrix
- *> B, packed columnwise in a linear array. The j-th column of B
- *> is stored in the array BP as follows:
- *> if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
- *> if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
- *>
- *> On exit, the triangular factor U or L from the Cholesky
- *> factorization B = U**H*U or B = L*L**H, in the same storage
- *> format as B.
- *> \endverbatim
- *>
- *> \param[in] VL
- *> \verbatim
- *> VL is REAL
- *>
- *> If RANGE='V', the lower bound of the interval to
- *> be searched for eigenvalues. VL < VU.
- *> Not referenced if RANGE = 'A' or 'I'.
- *> \endverbatim
- *>
- *> \param[in] VU
- *> \verbatim
- *> VU is REAL
- *>
- *> If RANGE='V', the upper bound of the interval to
- *> be searched for eigenvalues. VL < VU.
- *> Not referenced if RANGE = 'A' or 'I'.
- *> \endverbatim
- *>
- *> \param[in] IL
- *> \verbatim
- *> IL is INTEGER
- *>
- *> If RANGE='I', the index of the
- *> smallest eigenvalue to be returned.
- *> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
- *> Not referenced if RANGE = 'A' or 'V'.
- *> \endverbatim
- *>
- *> \param[in] IU
- *> \verbatim
- *> IU is INTEGER
- *>
- *> If RANGE='I', the index of the
- *> largest eigenvalue to be returned.
- *> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
- *> Not referenced if RANGE = 'A' or 'V'.
- *> \endverbatim
- *>
- *> \param[in] ABSTOL
- *> \verbatim
- *> ABSTOL is REAL
- *> The absolute error tolerance for the eigenvalues.
- *> An approximate eigenvalue is accepted as converged
- *> when it is determined to lie in an interval [a,b]
- *> of width less than or equal to
- *>
- *> ABSTOL + EPS * max( |a|,|b| ) ,
- *>
- *> where EPS is the machine precision. If ABSTOL is less than
- *> or equal to zero, then EPS*|T| will be used in its place,
- *> where |T| is the 1-norm of the tridiagonal matrix obtained
- *> by reducing AP to tridiagonal form.
- *>
- *> Eigenvalues will be computed most accurately when ABSTOL is
- *> set to twice the underflow threshold 2*SLAMCH('S'), not zero.
- *> If this routine returns with INFO>0, indicating that some
- *> eigenvectors did not converge, try setting ABSTOL to
- *> 2*SLAMCH('S').
- *> \endverbatim
- *>
- *> \param[out] M
- *> \verbatim
- *> M is INTEGER
- *> The total number of eigenvalues found. 0 <= M <= N.
- *> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
- *> \endverbatim
- *>
- *> \param[out] W
- *> \verbatim
- *> W is REAL array, dimension (N)
- *> On normal exit, the first M elements contain the selected
- *> eigenvalues in ascending order.
- *> \endverbatim
- *>
- *> \param[out] Z
- *> \verbatim
- *> Z is COMPLEX array, dimension (LDZ, N)
- *> If JOBZ = 'N', then Z is not referenced.
- *> If JOBZ = 'V', then if INFO = 0, the first M columns of Z
- *> contain the orthonormal eigenvectors of the matrix A
- *> corresponding to the selected eigenvalues, with the i-th
- *> column of Z holding the eigenvector associated with W(i).
- *> The eigenvectors are normalized as follows:
- *> if ITYPE = 1 or 2, Z**H*B*Z = I;
- *> if ITYPE = 3, Z**H*inv(B)*Z = I.
- *>
- *> If an eigenvector fails to converge, then that column of Z
- *> contains the latest approximation to the eigenvector, and the
- *> index of the eigenvector is returned in IFAIL.
- *> Note: the user must ensure that at least max(1,M) columns are
- *> supplied in the array Z; if RANGE = 'V', the exact value of M
- *> is not known in advance and an upper bound must be used.
- *> \endverbatim
- *>
- *> \param[in] LDZ
- *> \verbatim
- *> LDZ is INTEGER
- *> The leading dimension of the array Z. LDZ >= 1, and if
- *> JOBZ = 'V', LDZ >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX array, dimension (2*N)
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is REAL array, dimension (7*N)
- *> \endverbatim
- *>
- *> \param[out] IWORK
- *> \verbatim
- *> IWORK is INTEGER array, dimension (5*N)
- *> \endverbatim
- *>
- *> \param[out] IFAIL
- *> \verbatim
- *> IFAIL is INTEGER array, dimension (N)
- *> If JOBZ = 'V', then if INFO = 0, the first M elements of
- *> IFAIL are zero. If INFO > 0, then IFAIL contains the
- *> indices of the eigenvectors that failed to converge.
- *> If JOBZ = 'N', then IFAIL is not referenced.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> > 0: CPPTRF or CHPEVX returned an error code:
- *> <= N: if INFO = i, CHPEVX failed to converge;
- *> i eigenvectors failed to converge. Their indices
- *> are stored in array IFAIL.
- *> > N: if INFO = N + i, for 1 <= i <= n, then the leading
- *> minor of order i of B is not positive definite.
- *> The factorization of B could not be completed and
- *> no eigenvalues or eigenvectors were computed.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complexOTHEReigen
- *
- *> \par Contributors:
- * ==================
- *>
- *> Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
- *
- * =====================================================================
- SUBROUTINE CHPGVX( ITYPE, JOBZ, RANGE, UPLO, N, AP, BP, VL, VU,
- $ IL, IU, ABSTOL, M, W, Z, LDZ, WORK, RWORK,
- $ IWORK, IFAIL, INFO )
- *
- * -- LAPACK driver routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER JOBZ, RANGE, UPLO
- INTEGER IL, INFO, ITYPE, IU, LDZ, M, N
- REAL ABSTOL, VL, VU
- * ..
- * .. Array Arguments ..
- INTEGER IFAIL( * ), IWORK( * )
- REAL RWORK( * ), W( * )
- COMPLEX AP( * ), BP( * ), WORK( * ), Z( LDZ, * )
- * ..
- *
- * =====================================================================
- *
- * .. Local Scalars ..
- LOGICAL ALLEIG, INDEIG, UPPER, VALEIG, WANTZ
- CHARACTER TRANS
- INTEGER J
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. External Subroutines ..
- EXTERNAL CHPEVX, CHPGST, CPPTRF, CTPMV, CTPSV, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MIN
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- WANTZ = LSAME( JOBZ, 'V' )
- UPPER = LSAME( UPLO, 'U' )
- ALLEIG = LSAME( RANGE, 'A' )
- VALEIG = LSAME( RANGE, 'V' )
- INDEIG = LSAME( RANGE, 'I' )
- *
- INFO = 0
- IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
- INFO = -1
- ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
- INFO = -2
- ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
- INFO = -3
- ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
- INFO = -4
- ELSE IF( N.LT.0 ) THEN
- INFO = -5
- ELSE
- IF( VALEIG ) THEN
- IF( N.GT.0 .AND. VU.LE.VL ) THEN
- INFO = -9
- END IF
- ELSE IF( INDEIG ) THEN
- IF( IL.LT.1 ) THEN
- INFO = -10
- ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
- INFO = -11
- END IF
- END IF
- END IF
- IF( INFO.EQ.0 ) THEN
- IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
- INFO = -16
- END IF
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'CHPGVX', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 )
- $ RETURN
- *
- * Form a Cholesky factorization of B.
- *
- CALL CPPTRF( UPLO, N, BP, INFO )
- IF( INFO.NE.0 ) THEN
- INFO = N + INFO
- RETURN
- END IF
- *
- * Transform problem to standard eigenvalue problem and solve.
- *
- CALL CHPGST( ITYPE, UPLO, N, AP, BP, INFO )
- CALL CHPEVX( JOBZ, RANGE, UPLO, N, AP, VL, VU, IL, IU, ABSTOL, M,
- $ W, Z, LDZ, WORK, RWORK, IWORK, IFAIL, INFO )
- *
- IF( WANTZ ) THEN
- *
- * Backtransform eigenvectors to the original problem.
- *
- IF( INFO.GT.0 )
- $ M = INFO - 1
- IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
- *
- * For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
- * backtransform eigenvectors: x = inv(L)**H*y or inv(U)*y
- *
- IF( UPPER ) THEN
- TRANS = 'N'
- ELSE
- TRANS = 'C'
- END IF
- *
- DO 10 J = 1, M
- CALL CTPSV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
- $ 1 )
- 10 CONTINUE
- *
- ELSE IF( ITYPE.EQ.3 ) THEN
- *
- * For B*A*x=(lambda)*x;
- * backtransform eigenvectors: x = L*y or U**H*y
- *
- IF( UPPER ) THEN
- TRANS = 'C'
- ELSE
- TRANS = 'N'
- END IF
- *
- DO 20 J = 1, M
- CALL CTPMV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
- $ 1 )
- 20 CONTINUE
- END IF
- END IF
- *
- RETURN
- *
- * End of CHPGVX
- *
- END
|