|
- *> \brief \b CHETRS2
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download CHETRS2 + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chetrs2.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chetrs2.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chetrs2.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CHETRS2( UPLO, N, NRHS, A, LDA, IPIV, B, LDB,
- * WORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER UPLO
- * INTEGER INFO, LDA, LDB, N, NRHS
- * ..
- * .. Array Arguments ..
- * INTEGER IPIV( * )
- * COMPLEX A( LDA, * ), B( LDB, * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CHETRS2 solves a system of linear equations A*X = B with a complex
- *> Hermitian matrix A using the factorization A = U*D*U**H or
- *> A = L*D*L**H computed by CHETRF and converted by CSYCONV.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> Specifies whether the details of the factorization are stored
- *> as an upper or lower triangular matrix.
- *> = 'U': Upper triangular, form is A = U*D*U**H;
- *> = 'L': Lower triangular, form is A = L*D*L**H.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] NRHS
- *> \verbatim
- *> NRHS is INTEGER
- *> The number of right hand sides, i.e., the number of columns
- *> of the matrix B. NRHS >= 0.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is COMPLEX array, dimension (LDA,N)
- *> The block diagonal matrix D and the multipliers used to
- *> obtain the factor U or L as computed by CHETRF.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in] IPIV
- *> \verbatim
- *> IPIV is INTEGER array, dimension (N)
- *> Details of the interchanges and the block structure of D
- *> as determined by CHETRF.
- *> \endverbatim
- *>
- *> \param[in,out] B
- *> \verbatim
- *> B is COMPLEX array, dimension (LDB,NRHS)
- *> On entry, the right hand side matrix B.
- *> On exit, the solution matrix X.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the array B. LDB >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complexHEcomputational
- *
- * =====================================================================
- SUBROUTINE CHETRS2( UPLO, N, NRHS, A, LDA, IPIV, B, LDB,
- $ WORK, INFO )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER UPLO
- INTEGER INFO, LDA, LDB, N, NRHS
- * ..
- * .. Array Arguments ..
- INTEGER IPIV( * )
- COMPLEX A( LDA, * ), B( LDB, * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- COMPLEX ONE
- PARAMETER ( ONE = (1.0E+0,0.0E+0) )
- * ..
- * .. Local Scalars ..
- LOGICAL UPPER
- INTEGER I, IINFO, J, K, KP
- REAL S
- COMPLEX AK, AKM1, AKM1K, BK, BKM1, DENOM
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. External Subroutines ..
- EXTERNAL CSSCAL, CSYCONV, CSWAP, CTRSM, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC CONJG, MAX, REAL
- * ..
- * .. Executable Statements ..
- *
- INFO = 0
- UPPER = LSAME( UPLO, 'U' )
- IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( NRHS.LT.0 ) THEN
- INFO = -3
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -5
- ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
- INFO = -8
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'CHETRS2', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 .OR. NRHS.EQ.0 )
- $ RETURN
- *
- * Convert A
- *
- CALL CSYCONV( UPLO, 'C', N, A, LDA, IPIV, WORK, IINFO )
- *
- IF( UPPER ) THEN
- *
- * Solve A*X = B, where A = U*D*U**H.
- *
- * P**T * B
- K=N
- DO WHILE ( K .GE. 1 )
- IF( IPIV( K ).GT.0 ) THEN
- * 1 x 1 diagonal block
- * Interchange rows K and IPIV(K).
- KP = IPIV( K )
- IF( KP.NE.K )
- $ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
- K=K-1
- ELSE
- * 2 x 2 diagonal block
- * Interchange rows K-1 and -IPIV(K).
- KP = -IPIV( K )
- IF( KP.EQ.-IPIV( K-1 ) )
- $ CALL CSWAP( NRHS, B( K-1, 1 ), LDB, B( KP, 1 ), LDB )
- K=K-2
- END IF
- END DO
- *
- * Compute (U \P**T * B) -> B [ (U \P**T * B) ]
- *
- CALL CTRSM('L','U','N','U',N,NRHS,ONE,A,LDA,B,LDB)
- *
- * Compute D \ B -> B [ D \ (U \P**T * B) ]
- *
- I=N
- DO WHILE ( I .GE. 1 )
- IF( IPIV(I) .GT. 0 ) THEN
- S = REAL( ONE ) / REAL( A( I, I ) )
- CALL CSSCAL( NRHS, S, B( I, 1 ), LDB )
- ELSEIF ( I .GT. 1) THEN
- IF ( IPIV(I-1) .EQ. IPIV(I) ) THEN
- AKM1K = WORK(I)
- AKM1 = A( I-1, I-1 ) / AKM1K
- AK = A( I, I ) / CONJG( AKM1K )
- DENOM = AKM1*AK - ONE
- DO 15 J = 1, NRHS
- BKM1 = B( I-1, J ) / AKM1K
- BK = B( I, J ) / CONJG( AKM1K )
- B( I-1, J ) = ( AK*BKM1-BK ) / DENOM
- B( I, J ) = ( AKM1*BK-BKM1 ) / DENOM
- 15 CONTINUE
- I = I - 1
- ENDIF
- ENDIF
- I = I - 1
- END DO
- *
- * Compute (U**H \ B) -> B [ U**H \ (D \ (U \P**T * B) ) ]
- *
- CALL CTRSM('L','U','C','U',N,NRHS,ONE,A,LDA,B,LDB)
- *
- * P * B [ P * (U**H \ (D \ (U \P**T * B) )) ]
- *
- K=1
- DO WHILE ( K .LE. N )
- IF( IPIV( K ).GT.0 ) THEN
- * 1 x 1 diagonal block
- * Interchange rows K and IPIV(K).
- KP = IPIV( K )
- IF( KP.NE.K )
- $ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
- K=K+1
- ELSE
- * 2 x 2 diagonal block
- * Interchange rows K-1 and -IPIV(K).
- KP = -IPIV( K )
- IF( K .LT. N .AND. KP.EQ.-IPIV( K+1 ) )
- $ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
- K=K+2
- ENDIF
- END DO
- *
- ELSE
- *
- * Solve A*X = B, where A = L*D*L**H.
- *
- * P**T * B
- K=1
- DO WHILE ( K .LE. N )
- IF( IPIV( K ).GT.0 ) THEN
- * 1 x 1 diagonal block
- * Interchange rows K and IPIV(K).
- KP = IPIV( K )
- IF( KP.NE.K )
- $ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
- K=K+1
- ELSE
- * 2 x 2 diagonal block
- * Interchange rows K and -IPIV(K+1).
- KP = -IPIV( K+1 )
- IF( KP.EQ.-IPIV( K ) )
- $ CALL CSWAP( NRHS, B( K+1, 1 ), LDB, B( KP, 1 ), LDB )
- K=K+2
- ENDIF
- END DO
- *
- * Compute (L \P**T * B) -> B [ (L \P**T * B) ]
- *
- CALL CTRSM('L','L','N','U',N,NRHS,ONE,A,LDA,B,LDB)
- *
- * Compute D \ B -> B [ D \ (L \P**T * B) ]
- *
- I=1
- DO WHILE ( I .LE. N )
- IF( IPIV(I) .GT. 0 ) THEN
- S = REAL( ONE ) / REAL( A( I, I ) )
- CALL CSSCAL( NRHS, S, B( I, 1 ), LDB )
- ELSE
- AKM1K = WORK(I)
- AKM1 = A( I, I ) / CONJG( AKM1K )
- AK = A( I+1, I+1 ) / AKM1K
- DENOM = AKM1*AK - ONE
- DO 25 J = 1, NRHS
- BKM1 = B( I, J ) / CONJG( AKM1K )
- BK = B( I+1, J ) / AKM1K
- B( I, J ) = ( AK*BKM1-BK ) / DENOM
- B( I+1, J ) = ( AKM1*BK-BKM1 ) / DENOM
- 25 CONTINUE
- I = I + 1
- ENDIF
- I = I + 1
- END DO
- *
- * Compute (L**H \ B) -> B [ L**H \ (D \ (L \P**T * B) ) ]
- *
- CALL CTRSM('L','L','C','U',N,NRHS,ONE,A,LDA,B,LDB)
- *
- * P * B [ P * (L**H \ (D \ (L \P**T * B) )) ]
- *
- K=N
- DO WHILE ( K .GE. 1 )
- IF( IPIV( K ).GT.0 ) THEN
- * 1 x 1 diagonal block
- * Interchange rows K and IPIV(K).
- KP = IPIV( K )
- IF( KP.NE.K )
- $ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
- K=K-1
- ELSE
- * 2 x 2 diagonal block
- * Interchange rows K-1 and -IPIV(K).
- KP = -IPIV( K )
- IF( K.GT.1 .AND. KP.EQ.-IPIV( K-1 ) )
- $ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
- K=K-2
- ENDIF
- END DO
- *
- END IF
- *
- * Revert A
- *
- CALL CSYCONV( UPLO, 'R', N, A, LDA, IPIV, WORK, IINFO )
- *
- RETURN
- *
- * End of CHETRS2
- *
- END
|