|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef int logical;
- typedef short int shortlogical;
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
- #define F2C_proc_par_types 1
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static complex c_b1 = {1.f,0.f};
- static complex c_b2 = {0.f,0.f};
-
- /* > \brief \b CHETRI_3X */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download CHETRI_3X + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chetri_
- 3x.f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chetri_
- 3x.f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chetri_
- 3x.f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE CHETRI_3X( UPLO, N, A, LDA, E, IPIV, WORK, NB, INFO ) */
-
- /* CHARACTER UPLO */
- /* INTEGER INFO, LDA, N, NB */
- /* INTEGER IPIV( * ) */
- /* COMPLEX A( LDA, * ), E( * ), WORK( N+NB+1, * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > CHETRI_3X computes the inverse of a complex Hermitian indefinite */
- /* > matrix A using the factorization computed by CHETRF_RK or CHETRF_BK: */
- /* > */
- /* > A = P*U*D*(U**H)*(P**T) or A = P*L*D*(L**H)*(P**T), */
- /* > */
- /* > where U (or L) is unit upper (or lower) triangular matrix, */
- /* > U**H (or L**H) is the conjugate of U (or L), P is a permutation */
- /* > matrix, P**T is the transpose of P, and D is Hermitian and block */
- /* > diagonal with 1-by-1 and 2-by-2 diagonal blocks. */
- /* > */
- /* > This is the blocked version of the algorithm, calling Level 3 BLAS. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] UPLO */
- /* > \verbatim */
- /* > UPLO is CHARACTER*1 */
- /* > Specifies whether the details of the factorization are */
- /* > stored as an upper or lower triangular matrix. */
- /* > = 'U': Upper triangle of A is stored; */
- /* > = 'L': Lower triangle of A is stored. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The order of the matrix A. N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] A */
- /* > \verbatim */
- /* > A is COMPLEX array, dimension (LDA,N) */
- /* > On entry, diagonal of the block diagonal matrix D and */
- /* > factors U or L as computed by CHETRF_RK and CHETRF_BK: */
- /* > a) ONLY diagonal elements of the Hermitian block diagonal */
- /* > matrix D on the diagonal of A, i.e. D(k,k) = A(k,k); */
- /* > (superdiagonal (or subdiagonal) elements of D */
- /* > should be provided on entry in array E), and */
- /* > b) If UPLO = 'U': factor U in the superdiagonal part of A. */
- /* > If UPLO = 'L': factor L in the subdiagonal part of A. */
- /* > */
- /* > On exit, if INFO = 0, the Hermitian inverse of the original */
- /* > matrix. */
- /* > If UPLO = 'U': the upper triangular part of the inverse */
- /* > is formed and the part of A below the diagonal is not */
- /* > referenced; */
- /* > If UPLO = 'L': the lower triangular part of the inverse */
- /* > is formed and the part of A above the diagonal is not */
- /* > referenced. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDA */
- /* > \verbatim */
- /* > LDA is INTEGER */
- /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] E */
- /* > \verbatim */
- /* > E is COMPLEX array, dimension (N) */
- /* > On entry, contains the superdiagonal (or subdiagonal) */
- /* > elements of the Hermitian block diagonal matrix D */
- /* > with 1-by-1 or 2-by-2 diagonal blocks, where */
- /* > If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) not referenced; */
- /* > If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) not referenced. */
- /* > */
- /* > NOTE: For 1-by-1 diagonal block D(k), where */
- /* > 1 <= k <= N, the element E(k) is not referenced in both */
- /* > UPLO = 'U' or UPLO = 'L' cases. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] IPIV */
- /* > \verbatim */
- /* > IPIV is INTEGER array, dimension (N) */
- /* > Details of the interchanges and the block structure of D */
- /* > as determined by CHETRF_RK or CHETRF_BK. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > WORK is COMPLEX array, dimension (N+NB+1,NB+3). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] NB */
- /* > \verbatim */
- /* > NB is INTEGER */
- /* > Block size. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit */
- /* > < 0: if INFO = -i, the i-th argument had an illegal value */
- /* > > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its */
- /* > inverse could not be computed. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date June 2017 */
-
- /* > \ingroup complexHEcomputational */
-
- /* > \par Contributors: */
- /* ================== */
- /* > \verbatim */
- /* > */
- /* > June 2017, Igor Kozachenko, */
- /* > Computer Science Division, */
- /* > University of California, Berkeley */
- /* > */
- /* > \endverbatim */
-
- /* ===================================================================== */
- /* Subroutine */ void chetri_3x_(char *uplo, integer *n, complex *a, integer *
- lda, complex *e, integer *ipiv, complex *work, integer *nb, integer *
- info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, work_dim1, work_offset, i__1, i__2, i__3, i__4,
- i__5, i__6;
- real r__1;
- complex q__1, q__2, q__3;
-
- /* Local variables */
- integer invd;
- extern /* Subroutine */ void cheswapr_(char *, integer *, complex *,
- integer *, integer *, integer *);
- complex akkp1, d__;
- integer i__, j, k;
- real t;
- extern /* Subroutine */ void cgemm_(char *, char *, integer *, integer *,
- integer *, complex *, complex *, integer *, complex *, integer *,
- complex *, complex *, integer *);
- extern logical lsame_(char *, char *);
- extern /* Subroutine */ void ctrmm_(char *, char *, char *, char *,
- integer *, integer *, complex *, complex *, integer *, complex *,
- integer *);
- logical upper;
- real ak;
- complex u01_i_j__;
- integer u11;
- complex u11_i_j__;
- integer ip;
- extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
- integer icount;
- extern /* Subroutine */ int ctrtri_(char *, char *, integer *, complex *,
- integer *, integer *);
- integer nnb, cut;
- real akp1;
- complex u01_ip1_j__, u11_ip1_j__;
-
-
- /* -- LAPACK computational routine (version 3.7.1) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* June 2017 */
-
-
- /* ===================================================================== */
-
-
- /* Test the input parameters. */
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --e;
- --ipiv;
- work_dim1 = *n + *nb + 1;
- work_offset = 1 + work_dim1 * 1;
- work -= work_offset;
-
- /* Function Body */
- *info = 0;
- upper = lsame_(uplo, "U");
- if (! upper && ! lsame_(uplo, "L")) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*lda < f2cmax(1,*n)) {
- *info = -4;
- }
-
- /* Quick return if possible */
-
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("CHETRI_3X", &i__1, (ftnlen)9);
- return;
- }
- if (*n == 0) {
- return;
- }
-
- /* Workspace got Non-diag elements of D */
-
- i__1 = *n;
- for (k = 1; k <= i__1; ++k) {
- i__2 = k + work_dim1;
- i__3 = k;
- work[i__2].r = e[i__3].r, work[i__2].i = e[i__3].i;
- }
-
- /* Check that the diagonal matrix D is nonsingular. */
-
- if (upper) {
-
- /* Upper triangular storage: examine D from bottom to top */
-
- for (*info = *n; *info >= 1; --(*info)) {
- i__1 = *info + *info * a_dim1;
- if (ipiv[*info] > 0 && (a[i__1].r == 0.f && a[i__1].i == 0.f)) {
- return;
- }
- }
- } else {
-
- /* Lower triangular storage: examine D from top to bottom. */
-
- i__1 = *n;
- for (*info = 1; *info <= i__1; ++(*info)) {
- i__2 = *info + *info * a_dim1;
- if (ipiv[*info] > 0 && (a[i__2].r == 0.f && a[i__2].i == 0.f)) {
- return;
- }
- }
- }
-
- *info = 0;
-
- /* Splitting Workspace */
- /* U01 is a block ( N, NB+1 ) */
- /* The first element of U01 is in WORK( 1, 1 ) */
- /* U11 is a block ( NB+1, NB+1 ) */
- /* The first element of U11 is in WORK( N+1, 1 ) */
-
- u11 = *n;
-
- /* INVD is a block ( N, 2 ) */
- /* The first element of INVD is in WORK( 1, INVD ) */
-
- invd = *nb + 2;
- if (upper) {
-
- /* Begin Upper */
-
- /* invA = P * inv(U**H) * inv(D) * inv(U) * P**T. */
-
- ctrtri_(uplo, "U", n, &a[a_offset], lda, info);
-
- /* inv(D) and inv(D) * inv(U) */
-
- k = 1;
- while(k <= *n) {
- if (ipiv[k] > 0) {
- /* 1 x 1 diagonal NNB */
- i__1 = k + invd * work_dim1;
- i__2 = k + k * a_dim1;
- r__1 = 1.f / a[i__2].r;
- work[i__1].r = r__1, work[i__1].i = 0.f;
- i__1 = k + (invd + 1) * work_dim1;
- work[i__1].r = 0.f, work[i__1].i = 0.f;
- } else {
- /* 2 x 2 diagonal NNB */
- t = c_abs(&work[k + 1 + work_dim1]);
- i__1 = k + k * a_dim1;
- ak = a[i__1].r / t;
- i__1 = k + 1 + (k + 1) * a_dim1;
- akp1 = a[i__1].r / t;
- i__1 = k + 1 + work_dim1;
- q__1.r = work[i__1].r / t, q__1.i = work[i__1].i / t;
- akkp1.r = q__1.r, akkp1.i = q__1.i;
- r__1 = ak * akp1;
- q__2.r = r__1 - 1.f, q__2.i = 0.f;
- q__1.r = t * q__2.r, q__1.i = t * q__2.i;
- d__.r = q__1.r, d__.i = q__1.i;
- i__1 = k + invd * work_dim1;
- q__2.r = akp1, q__2.i = 0.f;
- c_div(&q__1, &q__2, &d__);
- work[i__1].r = q__1.r, work[i__1].i = q__1.i;
- i__1 = k + 1 + (invd + 1) * work_dim1;
- q__2.r = ak, q__2.i = 0.f;
- c_div(&q__1, &q__2, &d__);
- work[i__1].r = q__1.r, work[i__1].i = q__1.i;
- i__1 = k + (invd + 1) * work_dim1;
- q__2.r = -akkp1.r, q__2.i = -akkp1.i;
- c_div(&q__1, &q__2, &d__);
- work[i__1].r = q__1.r, work[i__1].i = q__1.i;
- i__1 = k + 1 + invd * work_dim1;
- r_cnjg(&q__1, &work[k + (invd + 1) * work_dim1]);
- work[i__1].r = q__1.r, work[i__1].i = q__1.i;
- ++k;
- }
- ++k;
- }
-
- /* inv(U**H) = (inv(U))**H */
-
- /* inv(U**H) * inv(D) * inv(U) */
-
- cut = *n;
- while(cut > 0) {
- nnb = *nb;
- if (cut <= nnb) {
- nnb = cut;
- } else {
- icount = 0;
- /* count negative elements, */
- i__1 = cut;
- for (i__ = cut + 1 - nnb; i__ <= i__1; ++i__) {
- if (ipiv[i__] < 0) {
- ++icount;
- }
- }
- /* need a even number for a clear cut */
- if (icount % 2 == 1) {
- ++nnb;
- }
- }
- cut -= nnb;
-
- /* U01 Block */
-
- i__1 = cut;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = nnb;
- for (j = 1; j <= i__2; ++j) {
- i__3 = i__ + j * work_dim1;
- i__4 = i__ + (cut + j) * a_dim1;
- work[i__3].r = a[i__4].r, work[i__3].i = a[i__4].i;
- }
- }
-
- /* U11 Block */
-
- i__1 = nnb;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = u11 + i__ + i__ * work_dim1;
- work[i__2].r = 1.f, work[i__2].i = 0.f;
- i__2 = i__ - 1;
- for (j = 1; j <= i__2; ++j) {
- i__3 = u11 + i__ + j * work_dim1;
- work[i__3].r = 0.f, work[i__3].i = 0.f;
- }
- i__2 = nnb;
- for (j = i__ + 1; j <= i__2; ++j) {
- i__3 = u11 + i__ + j * work_dim1;
- i__4 = cut + i__ + (cut + j) * a_dim1;
- work[i__3].r = a[i__4].r, work[i__3].i = a[i__4].i;
- }
- }
-
- /* invD * U01 */
-
- i__ = 1;
- while(i__ <= cut) {
- if (ipiv[i__] > 0) {
- i__1 = nnb;
- for (j = 1; j <= i__1; ++j) {
- i__2 = i__ + j * work_dim1;
- i__3 = i__ + invd * work_dim1;
- i__4 = i__ + j * work_dim1;
- q__1.r = work[i__3].r * work[i__4].r - work[i__3].i *
- work[i__4].i, q__1.i = work[i__3].r * work[
- i__4].i + work[i__3].i * work[i__4].r;
- work[i__2].r = q__1.r, work[i__2].i = q__1.i;
- }
- } else {
- i__1 = nnb;
- for (j = 1; j <= i__1; ++j) {
- i__2 = i__ + j * work_dim1;
- u01_i_j__.r = work[i__2].r, u01_i_j__.i = work[i__2]
- .i;
- i__2 = i__ + 1 + j * work_dim1;
- u01_ip1_j__.r = work[i__2].r, u01_ip1_j__.i = work[
- i__2].i;
- i__2 = i__ + j * work_dim1;
- i__3 = i__ + invd * work_dim1;
- q__2.r = work[i__3].r * u01_i_j__.r - work[i__3].i *
- u01_i_j__.i, q__2.i = work[i__3].r *
- u01_i_j__.i + work[i__3].i * u01_i_j__.r;
- i__4 = i__ + (invd + 1) * work_dim1;
- q__3.r = work[i__4].r * u01_ip1_j__.r - work[i__4].i *
- u01_ip1_j__.i, q__3.i = work[i__4].r *
- u01_ip1_j__.i + work[i__4].i * u01_ip1_j__.r;
- q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
- work[i__2].r = q__1.r, work[i__2].i = q__1.i;
- i__2 = i__ + 1 + j * work_dim1;
- i__3 = i__ + 1 + invd * work_dim1;
- q__2.r = work[i__3].r * u01_i_j__.r - work[i__3].i *
- u01_i_j__.i, q__2.i = work[i__3].r *
- u01_i_j__.i + work[i__3].i * u01_i_j__.r;
- i__4 = i__ + 1 + (invd + 1) * work_dim1;
- q__3.r = work[i__4].r * u01_ip1_j__.r - work[i__4].i *
- u01_ip1_j__.i, q__3.i = work[i__4].r *
- u01_ip1_j__.i + work[i__4].i * u01_ip1_j__.r;
- q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
- work[i__2].r = q__1.r, work[i__2].i = q__1.i;
- }
- ++i__;
- }
- ++i__;
- }
-
- /* invD1 * U11 */
-
- i__ = 1;
- while(i__ <= nnb) {
- if (ipiv[cut + i__] > 0) {
- i__1 = nnb;
- for (j = i__; j <= i__1; ++j) {
- i__2 = u11 + i__ + j * work_dim1;
- i__3 = cut + i__ + invd * work_dim1;
- i__4 = u11 + i__ + j * work_dim1;
- q__1.r = work[i__3].r * work[i__4].r - work[i__3].i *
- work[i__4].i, q__1.i = work[i__3].r * work[
- i__4].i + work[i__3].i * work[i__4].r;
- work[i__2].r = q__1.r, work[i__2].i = q__1.i;
- }
- } else {
- i__1 = nnb;
- for (j = i__; j <= i__1; ++j) {
- i__2 = u11 + i__ + j * work_dim1;
- u11_i_j__.r = work[i__2].r, u11_i_j__.i = work[i__2]
- .i;
- i__2 = u11 + i__ + 1 + j * work_dim1;
- u11_ip1_j__.r = work[i__2].r, u11_ip1_j__.i = work[
- i__2].i;
- i__2 = u11 + i__ + j * work_dim1;
- i__3 = cut + i__ + invd * work_dim1;
- i__4 = u11 + i__ + j * work_dim1;
- q__2.r = work[i__3].r * work[i__4].r - work[i__3].i *
- work[i__4].i, q__2.i = work[i__3].r * work[
- i__4].i + work[i__3].i * work[i__4].r;
- i__5 = cut + i__ + (invd + 1) * work_dim1;
- i__6 = u11 + i__ + 1 + j * work_dim1;
- q__3.r = work[i__5].r * work[i__6].r - work[i__5].i *
- work[i__6].i, q__3.i = work[i__5].r * work[
- i__6].i + work[i__5].i * work[i__6].r;
- q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
- work[i__2].r = q__1.r, work[i__2].i = q__1.i;
- i__2 = u11 + i__ + 1 + j * work_dim1;
- i__3 = cut + i__ + 1 + invd * work_dim1;
- q__2.r = work[i__3].r * u11_i_j__.r - work[i__3].i *
- u11_i_j__.i, q__2.i = work[i__3].r *
- u11_i_j__.i + work[i__3].i * u11_i_j__.r;
- i__4 = cut + i__ + 1 + (invd + 1) * work_dim1;
- q__3.r = work[i__4].r * u11_ip1_j__.r - work[i__4].i *
- u11_ip1_j__.i, q__3.i = work[i__4].r *
- u11_ip1_j__.i + work[i__4].i * u11_ip1_j__.r;
- q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
- work[i__2].r = q__1.r, work[i__2].i = q__1.i;
- }
- ++i__;
- }
- ++i__;
- }
-
- /* U11**H * invD1 * U11 -> U11 */
-
- i__1 = *n + *nb + 1;
- ctrmm_("L", "U", "C", "U", &nnb, &nnb, &c_b1, &a[cut + 1 + (cut +
- 1) * a_dim1], lda, &work[u11 + 1 + work_dim1], &i__1);
-
- i__1 = nnb;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = nnb;
- for (j = i__; j <= i__2; ++j) {
- i__3 = cut + i__ + (cut + j) * a_dim1;
- i__4 = u11 + i__ + j * work_dim1;
- a[i__3].r = work[i__4].r, a[i__3].i = work[i__4].i;
- }
- }
-
- /* U01**H * invD * U01 -> A( CUT+I, CUT+J ) */
-
- i__1 = *n + *nb + 1;
- i__2 = *n + *nb + 1;
- cgemm_("C", "N", &nnb, &nnb, &cut, &c_b1, &a[(cut + 1) * a_dim1 +
- 1], lda, &work[work_offset], &i__1, &c_b2, &work[u11 + 1
- + work_dim1], &i__2);
-
- /* U11 = U11**H * invD1 * U11 + U01**H * invD * U01 */
-
- i__1 = nnb;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = nnb;
- for (j = i__; j <= i__2; ++j) {
- i__3 = cut + i__ + (cut + j) * a_dim1;
- i__4 = cut + i__ + (cut + j) * a_dim1;
- i__5 = u11 + i__ + j * work_dim1;
- q__1.r = a[i__4].r + work[i__5].r, q__1.i = a[i__4].i +
- work[i__5].i;
- a[i__3].r = q__1.r, a[i__3].i = q__1.i;
- }
- }
-
- /* U01 = U00**H * invD0 * U01 */
-
- i__1 = *n + *nb + 1;
- ctrmm_("L", uplo, "C", "U", &cut, &nnb, &c_b1, &a[a_offset], lda,
- &work[work_offset], &i__1);
-
- /* Update U01 */
-
- i__1 = cut;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = nnb;
- for (j = 1; j <= i__2; ++j) {
- i__3 = i__ + (cut + j) * a_dim1;
- i__4 = i__ + j * work_dim1;
- a[i__3].r = work[i__4].r, a[i__3].i = work[i__4].i;
- }
- }
-
- /* Next Block */
-
- }
-
- /* Apply PERMUTATIONS P and P**T: */
- /* P * inv(U**H) * inv(D) * inv(U) * P**T. */
- /* Interchange rows and columns I and IPIV(I) in reverse order */
- /* from the formation order of IPIV vector for Upper case. */
-
- /* ( We can use a loop over IPIV with increment 1, */
- /* since the ABS value of IPIV(I) represents the row (column) */
- /* index of the interchange with row (column) i in both 1x1 */
- /* and 2x2 pivot cases, i.e. we don't need separate code branches */
- /* for 1x1 and 2x2 pivot cases ) */
-
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- ip = (i__2 = ipiv[i__], abs(i__2));
- if (ip != i__) {
- if (i__ < ip) {
- cheswapr_(uplo, n, &a[a_offset], lda, &i__, &ip);
- }
- if (i__ > ip) {
- cheswapr_(uplo, n, &a[a_offset], lda, &ip, &i__);
- }
- }
- }
-
- } else {
-
- /* Begin Lower */
-
- /* inv A = P * inv(L**H) * inv(D) * inv(L) * P**T. */
-
- ctrtri_(uplo, "U", n, &a[a_offset], lda, info);
-
- /* inv(D) and inv(D) * inv(L) */
-
- k = *n;
- while(k >= 1) {
- if (ipiv[k] > 0) {
- /* 1 x 1 diagonal NNB */
- i__1 = k + invd * work_dim1;
- i__2 = k + k * a_dim1;
- r__1 = 1.f / a[i__2].r;
- work[i__1].r = r__1, work[i__1].i = 0.f;
- i__1 = k + (invd + 1) * work_dim1;
- work[i__1].r = 0.f, work[i__1].i = 0.f;
- } else {
- /* 2 x 2 diagonal NNB */
- t = c_abs(&work[k - 1 + work_dim1]);
- i__1 = k - 1 + (k - 1) * a_dim1;
- ak = a[i__1].r / t;
- i__1 = k + k * a_dim1;
- akp1 = a[i__1].r / t;
- i__1 = k - 1 + work_dim1;
- q__1.r = work[i__1].r / t, q__1.i = work[i__1].i / t;
- akkp1.r = q__1.r, akkp1.i = q__1.i;
- r__1 = ak * akp1;
- q__2.r = r__1 - 1.f, q__2.i = 0.f;
- q__1.r = t * q__2.r, q__1.i = t * q__2.i;
- d__.r = q__1.r, d__.i = q__1.i;
- i__1 = k - 1 + invd * work_dim1;
- q__2.r = akp1, q__2.i = 0.f;
- c_div(&q__1, &q__2, &d__);
- work[i__1].r = q__1.r, work[i__1].i = q__1.i;
- i__1 = k + invd * work_dim1;
- q__2.r = ak, q__2.i = 0.f;
- c_div(&q__1, &q__2, &d__);
- work[i__1].r = q__1.r, work[i__1].i = q__1.i;
- i__1 = k + (invd + 1) * work_dim1;
- q__2.r = -akkp1.r, q__2.i = -akkp1.i;
- c_div(&q__1, &q__2, &d__);
- work[i__1].r = q__1.r, work[i__1].i = q__1.i;
- i__1 = k - 1 + (invd + 1) * work_dim1;
- r_cnjg(&q__1, &work[k + (invd + 1) * work_dim1]);
- work[i__1].r = q__1.r, work[i__1].i = q__1.i;
- --k;
- }
- --k;
- }
-
- /* inv(L**H) = (inv(L))**H */
-
- /* inv(L**H) * inv(D) * inv(L) */
-
- cut = 0;
- while(cut < *n) {
- nnb = *nb;
- if (cut + nnb > *n) {
- nnb = *n - cut;
- } else {
- icount = 0;
- /* count negative elements, */
- i__1 = cut + nnb;
- for (i__ = cut + 1; i__ <= i__1; ++i__) {
- if (ipiv[i__] < 0) {
- ++icount;
- }
- }
- /* need a even number for a clear cut */
- if (icount % 2 == 1) {
- ++nnb;
- }
- }
-
- /* L21 Block */
-
- i__1 = *n - cut - nnb;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = nnb;
- for (j = 1; j <= i__2; ++j) {
- i__3 = i__ + j * work_dim1;
- i__4 = cut + nnb + i__ + (cut + j) * a_dim1;
- work[i__3].r = a[i__4].r, work[i__3].i = a[i__4].i;
- }
- }
-
- /* L11 Block */
-
- i__1 = nnb;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = u11 + i__ + i__ * work_dim1;
- work[i__2].r = 1.f, work[i__2].i = 0.f;
- i__2 = nnb;
- for (j = i__ + 1; j <= i__2; ++j) {
- i__3 = u11 + i__ + j * work_dim1;
- work[i__3].r = 0.f, work[i__3].i = 0.f;
- }
- i__2 = i__ - 1;
- for (j = 1; j <= i__2; ++j) {
- i__3 = u11 + i__ + j * work_dim1;
- i__4 = cut + i__ + (cut + j) * a_dim1;
- work[i__3].r = a[i__4].r, work[i__3].i = a[i__4].i;
- }
- }
-
- /* invD*L21 */
-
- i__ = *n - cut - nnb;
- while(i__ >= 1) {
- if (ipiv[cut + nnb + i__] > 0) {
- i__1 = nnb;
- for (j = 1; j <= i__1; ++j) {
- i__2 = i__ + j * work_dim1;
- i__3 = cut + nnb + i__ + invd * work_dim1;
- i__4 = i__ + j * work_dim1;
- q__1.r = work[i__3].r * work[i__4].r - work[i__3].i *
- work[i__4].i, q__1.i = work[i__3].r * work[
- i__4].i + work[i__3].i * work[i__4].r;
- work[i__2].r = q__1.r, work[i__2].i = q__1.i;
- }
- } else {
- i__1 = nnb;
- for (j = 1; j <= i__1; ++j) {
- i__2 = i__ + j * work_dim1;
- u01_i_j__.r = work[i__2].r, u01_i_j__.i = work[i__2]
- .i;
- i__2 = i__ - 1 + j * work_dim1;
- u01_ip1_j__.r = work[i__2].r, u01_ip1_j__.i = work[
- i__2].i;
- i__2 = i__ + j * work_dim1;
- i__3 = cut + nnb + i__ + invd * work_dim1;
- q__2.r = work[i__3].r * u01_i_j__.r - work[i__3].i *
- u01_i_j__.i, q__2.i = work[i__3].r *
- u01_i_j__.i + work[i__3].i * u01_i_j__.r;
- i__4 = cut + nnb + i__ + (invd + 1) * work_dim1;
- q__3.r = work[i__4].r * u01_ip1_j__.r - work[i__4].i *
- u01_ip1_j__.i, q__3.i = work[i__4].r *
- u01_ip1_j__.i + work[i__4].i * u01_ip1_j__.r;
- q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
- work[i__2].r = q__1.r, work[i__2].i = q__1.i;
- i__2 = i__ - 1 + j * work_dim1;
- i__3 = cut + nnb + i__ - 1 + (invd + 1) * work_dim1;
- q__2.r = work[i__3].r * u01_i_j__.r - work[i__3].i *
- u01_i_j__.i, q__2.i = work[i__3].r *
- u01_i_j__.i + work[i__3].i * u01_i_j__.r;
- i__4 = cut + nnb + i__ - 1 + invd * work_dim1;
- q__3.r = work[i__4].r * u01_ip1_j__.r - work[i__4].i *
- u01_ip1_j__.i, q__3.i = work[i__4].r *
- u01_ip1_j__.i + work[i__4].i * u01_ip1_j__.r;
- q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
- work[i__2].r = q__1.r, work[i__2].i = q__1.i;
- }
- --i__;
- }
- --i__;
- }
-
- /* invD1*L11 */
-
- i__ = nnb;
- while(i__ >= 1) {
- if (ipiv[cut + i__] > 0) {
- i__1 = nnb;
- for (j = 1; j <= i__1; ++j) {
- i__2 = u11 + i__ + j * work_dim1;
- i__3 = cut + i__ + invd * work_dim1;
- i__4 = u11 + i__ + j * work_dim1;
- q__1.r = work[i__3].r * work[i__4].r - work[i__3].i *
- work[i__4].i, q__1.i = work[i__3].r * work[
- i__4].i + work[i__3].i * work[i__4].r;
- work[i__2].r = q__1.r, work[i__2].i = q__1.i;
- }
- } else {
- i__1 = nnb;
- for (j = 1; j <= i__1; ++j) {
- i__2 = u11 + i__ + j * work_dim1;
- u11_i_j__.r = work[i__2].r, u11_i_j__.i = work[i__2]
- .i;
- i__2 = u11 + i__ - 1 + j * work_dim1;
- u11_ip1_j__.r = work[i__2].r, u11_ip1_j__.i = work[
- i__2].i;
- i__2 = u11 + i__ + j * work_dim1;
- i__3 = cut + i__ + invd * work_dim1;
- i__4 = u11 + i__ + j * work_dim1;
- q__2.r = work[i__3].r * work[i__4].r - work[i__3].i *
- work[i__4].i, q__2.i = work[i__3].r * work[
- i__4].i + work[i__3].i * work[i__4].r;
- i__5 = cut + i__ + (invd + 1) * work_dim1;
- q__3.r = work[i__5].r * u11_ip1_j__.r - work[i__5].i *
- u11_ip1_j__.i, q__3.i = work[i__5].r *
- u11_ip1_j__.i + work[i__5].i * u11_ip1_j__.r;
- q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
- work[i__2].r = q__1.r, work[i__2].i = q__1.i;
- i__2 = u11 + i__ - 1 + j * work_dim1;
- i__3 = cut + i__ - 1 + (invd + 1) * work_dim1;
- q__2.r = work[i__3].r * u11_i_j__.r - work[i__3].i *
- u11_i_j__.i, q__2.i = work[i__3].r *
- u11_i_j__.i + work[i__3].i * u11_i_j__.r;
- i__4 = cut + i__ - 1 + invd * work_dim1;
- q__3.r = work[i__4].r * u11_ip1_j__.r - work[i__4].i *
- u11_ip1_j__.i, q__3.i = work[i__4].r *
- u11_ip1_j__.i + work[i__4].i * u11_ip1_j__.r;
- q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
- work[i__2].r = q__1.r, work[i__2].i = q__1.i;
- }
- --i__;
- }
- --i__;
- }
-
- /* L11**H * invD1 * L11 -> L11 */
-
- i__1 = *n + *nb + 1;
- ctrmm_("L", uplo, "C", "U", &nnb, &nnb, &c_b1, &a[cut + 1 + (cut
- + 1) * a_dim1], lda, &work[u11 + 1 + work_dim1], &i__1);
-
- i__1 = nnb;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = i__;
- for (j = 1; j <= i__2; ++j) {
- i__3 = cut + i__ + (cut + j) * a_dim1;
- i__4 = u11 + i__ + j * work_dim1;
- a[i__3].r = work[i__4].r, a[i__3].i = work[i__4].i;
- }
- }
-
- if (cut + nnb < *n) {
-
- /* L21**H * invD2*L21 -> A( CUT+I, CUT+J ) */
-
- i__1 = *n - nnb - cut;
- i__2 = *n + *nb + 1;
- i__3 = *n + *nb + 1;
- cgemm_("C", "N", &nnb, &nnb, &i__1, &c_b1, &a[cut + nnb + 1 +
- (cut + 1) * a_dim1], lda, &work[work_offset], &i__2, &
- c_b2, &work[u11 + 1 + work_dim1], &i__3);
-
- /* L11 = L11**H * invD1 * L11 + U01**H * invD * U01 */
-
- i__1 = nnb;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = i__;
- for (j = 1; j <= i__2; ++j) {
- i__3 = cut + i__ + (cut + j) * a_dim1;
- i__4 = cut + i__ + (cut + j) * a_dim1;
- i__5 = u11 + i__ + j * work_dim1;
- q__1.r = a[i__4].r + work[i__5].r, q__1.i = a[i__4].i
- + work[i__5].i;
- a[i__3].r = q__1.r, a[i__3].i = q__1.i;
- }
- }
-
- /* L01 = L22**H * invD2 * L21 */
-
- i__1 = *n - nnb - cut;
- i__2 = *n + *nb + 1;
- ctrmm_("L", uplo, "C", "U", &i__1, &nnb, &c_b1, &a[cut + nnb
- + 1 + (cut + nnb + 1) * a_dim1], lda, &work[
- work_offset], &i__2);
-
- /* Update L21 */
-
- i__1 = *n - cut - nnb;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = nnb;
- for (j = 1; j <= i__2; ++j) {
- i__3 = cut + nnb + i__ + (cut + j) * a_dim1;
- i__4 = i__ + j * work_dim1;
- a[i__3].r = work[i__4].r, a[i__3].i = work[i__4].i;
- }
- }
-
- } else {
-
- /* L11 = L11**H * invD1 * L11 */
-
- i__1 = nnb;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = i__;
- for (j = 1; j <= i__2; ++j) {
- i__3 = cut + i__ + (cut + j) * a_dim1;
- i__4 = u11 + i__ + j * work_dim1;
- a[i__3].r = work[i__4].r, a[i__3].i = work[i__4].i;
- }
- }
- }
-
- /* Next Block */
-
- cut += nnb;
-
- }
-
- /* Apply PERMUTATIONS P and P**T: */
- /* P * inv(L**H) * inv(D) * inv(L) * P**T. */
- /* Interchange rows and columns I and IPIV(I) in reverse order */
- /* from the formation order of IPIV vector for Lower case. */
-
- /* ( We can use a loop over IPIV with increment -1, */
- /* since the ABS value of IPIV(I) represents the row (column) */
- /* index of the interchange with row (column) i in both 1x1 */
- /* and 2x2 pivot cases, i.e. we don't need separate code branches */
- /* for 1x1 and 2x2 pivot cases ) */
-
- for (i__ = *n; i__ >= 1; --i__) {
- ip = (i__1 = ipiv[i__], abs(i__1));
- if (ip != i__) {
- if (i__ < ip) {
- cheswapr_(uplo, n, &a[a_offset], lda, &i__, &ip);
- }
- if (i__ > ip) {
- cheswapr_(uplo, n, &a[a_offset], lda, &ip, &i__);
- }
- }
- }
-
- }
-
- return;
-
- /* End of CHETRI_3X */
-
- } /* chetri_3x__ */
|