|
- *> \brief <b> CHEEVR computes the eigenvalues and, optionally, the left and/or right eigenvectors for HE matrices</b>
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download CHEEVR + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cheevr.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cheevr.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cheevr.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CHEEVR( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
- * ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK,
- * RWORK, LRWORK, IWORK, LIWORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER JOBZ, RANGE, UPLO
- * INTEGER IL, INFO, IU, LDA, LDZ, LIWORK, LRWORK, LWORK,
- * $ M, N
- * REAL ABSTOL, VL, VU
- * ..
- * .. Array Arguments ..
- * INTEGER ISUPPZ( * ), IWORK( * )
- * REAL RWORK( * ), W( * )
- * COMPLEX A( LDA, * ), WORK( * ), Z( LDZ, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CHEEVR computes selected eigenvalues and, optionally, eigenvectors
- *> of a complex Hermitian matrix A. Eigenvalues and eigenvectors can
- *> be selected by specifying either a range of values or a range of
- *> indices for the desired eigenvalues.
- *>
- *> CHEEVR first reduces the matrix A to tridiagonal form T with a call
- *> to CHETRD. Then, whenever possible, CHEEVR calls CSTEMR to compute
- *> the eigenspectrum using Relatively Robust Representations. CSTEMR
- *> computes eigenvalues by the dqds algorithm, while orthogonal
- *> eigenvectors are computed from various "good" L D L^T representations
- *> (also known as Relatively Robust Representations). Gram-Schmidt
- *> orthogonalization is avoided as far as possible. More specifically,
- *> the various steps of the algorithm are as follows.
- *>
- *> For each unreduced block (submatrix) of T,
- *> (a) Compute T - sigma I = L D L^T, so that L and D
- *> define all the wanted eigenvalues to high relative accuracy.
- *> This means that small relative changes in the entries of D and L
- *> cause only small relative changes in the eigenvalues and
- *> eigenvectors. The standard (unfactored) representation of the
- *> tridiagonal matrix T does not have this property in general.
- *> (b) Compute the eigenvalues to suitable accuracy.
- *> If the eigenvectors are desired, the algorithm attains full
- *> accuracy of the computed eigenvalues only right before
- *> the corresponding vectors have to be computed, see steps c) and d).
- *> (c) For each cluster of close eigenvalues, select a new
- *> shift close to the cluster, find a new factorization, and refine
- *> the shifted eigenvalues to suitable accuracy.
- *> (d) For each eigenvalue with a large enough relative separation compute
- *> the corresponding eigenvector by forming a rank revealing twisted
- *> factorization. Go back to (c) for any clusters that remain.
- *>
- *> The desired accuracy of the output can be specified by the input
- *> parameter ABSTOL.
- *>
- *> For more details, see CSTEMR's documentation and:
- *> - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations
- *> to compute orthogonal eigenvectors of symmetric tridiagonal matrices,"
- *> Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004.
- *> - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and
- *> Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25,
- *> 2004. Also LAPACK Working Note 154.
- *> - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric
- *> tridiagonal eigenvalue/eigenvector problem",
- *> Computer Science Division Technical Report No. UCB/CSD-97-971,
- *> UC Berkeley, May 1997.
- *>
- *>
- *> Note 1 : CHEEVR calls CSTEMR when the full spectrum is requested
- *> on machines which conform to the ieee-754 floating point standard.
- *> CHEEVR calls SSTEBZ and CSTEIN on non-ieee machines and
- *> when partial spectrum requests are made.
- *>
- *> Normal execution of CSTEMR may create NaNs and infinities and
- *> hence may abort due to a floating point exception in environments
- *> which do not handle NaNs and infinities in the ieee standard default
- *> manner.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] JOBZ
- *> \verbatim
- *> JOBZ is CHARACTER*1
- *> = 'N': Compute eigenvalues only;
- *> = 'V': Compute eigenvalues and eigenvectors.
- *> \endverbatim
- *>
- *> \param[in] RANGE
- *> \verbatim
- *> RANGE is CHARACTER*1
- *> = 'A': all eigenvalues will be found.
- *> = 'V': all eigenvalues in the half-open interval (VL,VU]
- *> will be found.
- *> = 'I': the IL-th through IU-th eigenvalues will be found.
- *> For RANGE = 'V' or 'I' and IU - IL < N - 1, SSTEBZ and
- *> CSTEIN are called
- *> \endverbatim
- *>
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> = 'U': Upper triangle of A is stored;
- *> = 'L': Lower triangle of A is stored.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is COMPLEX array, dimension (LDA, N)
- *> On entry, the Hermitian matrix A. If UPLO = 'U', the
- *> leading N-by-N upper triangular part of A contains the
- *> upper triangular part of the matrix A. If UPLO = 'L',
- *> the leading N-by-N lower triangular part of A contains
- *> the lower triangular part of the matrix A.
- *> On exit, the lower triangle (if UPLO='L') or the upper
- *> triangle (if UPLO='U') of A, including the diagonal, is
- *> destroyed.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in] VL
- *> \verbatim
- *> VL is REAL
- *> If RANGE='V', the lower bound of the interval to
- *> be searched for eigenvalues. VL < VU.
- *> Not referenced if RANGE = 'A' or 'I'.
- *> \endverbatim
- *>
- *> \param[in] VU
- *> \verbatim
- *> VU is REAL
- *> If RANGE='V', the upper bound of the interval to
- *> be searched for eigenvalues. VL < VU.
- *> Not referenced if RANGE = 'A' or 'I'.
- *> \endverbatim
- *>
- *> \param[in] IL
- *> \verbatim
- *> IL is INTEGER
- *> If RANGE='I', the index of the
- *> smallest eigenvalue to be returned.
- *> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
- *> Not referenced if RANGE = 'A' or 'V'.
- *> \endverbatim
- *>
- *> \param[in] IU
- *> \verbatim
- *> IU is INTEGER
- *> If RANGE='I', the index of the
- *> largest eigenvalue to be returned.
- *> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
- *> Not referenced if RANGE = 'A' or 'V'.
- *> \endverbatim
- *>
- *> \param[in] ABSTOL
- *> \verbatim
- *> ABSTOL is REAL
- *> The absolute error tolerance for the eigenvalues.
- *> An approximate eigenvalue is accepted as converged
- *> when it is determined to lie in an interval [a,b]
- *> of width less than or equal to
- *>
- *> ABSTOL + EPS * max( |a|,|b| ) ,
- *>
- *> where EPS is the machine precision. If ABSTOL is less than
- *> or equal to zero, then EPS*|T| will be used in its place,
- *> where |T| is the 1-norm of the tridiagonal matrix obtained
- *> by reducing A to tridiagonal form.
- *>
- *> See "Computing Small Singular Values of Bidiagonal Matrices
- *> with Guaranteed High Relative Accuracy," by Demmel and
- *> Kahan, LAPACK Working Note #3.
- *>
- *> If high relative accuracy is important, set ABSTOL to
- *> SLAMCH( 'Safe minimum' ). Doing so will guarantee that
- *> eigenvalues are computed to high relative accuracy when
- *> possible in future releases. The current code does not
- *> make any guarantees about high relative accuracy, but
- *> future releases will. See J. Barlow and J. Demmel,
- *> "Computing Accurate Eigensystems of Scaled Diagonally
- *> Dominant Matrices", LAPACK Working Note #7, for a discussion
- *> of which matrices define their eigenvalues to high relative
- *> accuracy.
- *> \endverbatim
- *>
- *> \param[out] M
- *> \verbatim
- *> M is INTEGER
- *> The total number of eigenvalues found. 0 <= M <= N.
- *> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
- *> \endverbatim
- *>
- *> \param[out] W
- *> \verbatim
- *> W is REAL array, dimension (N)
- *> The first M elements contain the selected eigenvalues in
- *> ascending order.
- *> \endverbatim
- *>
- *> \param[out] Z
- *> \verbatim
- *> Z is COMPLEX array, dimension (LDZ, max(1,M))
- *> If JOBZ = 'V', then if INFO = 0, the first M columns of Z
- *> contain the orthonormal eigenvectors of the matrix A
- *> corresponding to the selected eigenvalues, with the i-th
- *> column of Z holding the eigenvector associated with W(i).
- *> If JOBZ = 'N', then Z is not referenced.
- *> Note: the user must ensure that at least max(1,M) columns are
- *> supplied in the array Z; if RANGE = 'V', the exact value of M
- *> is not known in advance and an upper bound must be used.
- *> \endverbatim
- *>
- *> \param[in] LDZ
- *> \verbatim
- *> LDZ is INTEGER
- *> The leading dimension of the array Z. LDZ >= 1, and if
- *> JOBZ = 'V', LDZ >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] ISUPPZ
- *> \verbatim
- *> ISUPPZ is INTEGER array, dimension ( 2*max(1,M) )
- *> The support of the eigenvectors in Z, i.e., the indices
- *> indicating the nonzero elements in Z. The i-th eigenvector
- *> is nonzero only in elements ISUPPZ( 2*i-1 ) through
- *> ISUPPZ( 2*i ). This is an output of CSTEMR (tridiagonal
- *> matrix). The support of the eigenvectors of A is typically
- *> 1:N because of the unitary transformations applied by CUNMTR.
- *> Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX array, dimension (MAX(1,LWORK))
- *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The length of the array WORK. LWORK >= max(1,2*N).
- *> For optimal efficiency, LWORK >= (NB+1)*N,
- *> where NB is the max of the blocksize for CHETRD and for
- *> CUNMTR as returned by ILAENV.
- *>
- *> If LWORK = -1, then a workspace query is assumed; the routine
- *> only calculates the optimal sizes of the WORK, RWORK and
- *> IWORK arrays, returns these values as the first entries of
- *> the WORK, RWORK and IWORK arrays, and no error message
- *> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is REAL array, dimension (MAX(1,LRWORK))
- *> On exit, if INFO = 0, RWORK(1) returns the optimal
- *> (and minimal) LRWORK.
- *> \endverbatim
- *>
- *> \param[in] LRWORK
- *> \verbatim
- *> LRWORK is INTEGER
- *> The length of the array RWORK. LRWORK >= max(1,24*N).
- *>
- *> If LRWORK = -1, then a workspace query is assumed; the
- *> routine only calculates the optimal sizes of the WORK, RWORK
- *> and IWORK arrays, returns these values as the first entries
- *> of the WORK, RWORK and IWORK arrays, and no error message
- *> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] IWORK
- *> \verbatim
- *> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
- *> On exit, if INFO = 0, IWORK(1) returns the optimal
- *> (and minimal) LIWORK.
- *> \endverbatim
- *>
- *> \param[in] LIWORK
- *> \verbatim
- *> LIWORK is INTEGER
- *> The dimension of the array IWORK. LIWORK >= max(1,10*N).
- *>
- *> If LIWORK = -1, then a workspace query is assumed; the
- *> routine only calculates the optimal sizes of the WORK, RWORK
- *> and IWORK arrays, returns these values as the first entries
- *> of the WORK, RWORK and IWORK arrays, and no error message
- *> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> > 0: Internal error
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complexHEeigen
- *
- *> \par Contributors:
- * ==================
- *>
- *> Inderjit Dhillon, IBM Almaden, USA \n
- *> Osni Marques, LBNL/NERSC, USA \n
- *> Ken Stanley, Computer Science Division, University of
- *> California at Berkeley, USA \n
- *> Jason Riedy, Computer Science Division, University of
- *> California at Berkeley, USA \n
- *>
- * =====================================================================
- SUBROUTINE CHEEVR( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
- $ ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK,
- $ RWORK, LRWORK, IWORK, LIWORK, INFO )
- *
- * -- LAPACK driver routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER JOBZ, RANGE, UPLO
- INTEGER IL, INFO, IU, LDA, LDZ, LIWORK, LRWORK, LWORK,
- $ M, N
- REAL ABSTOL, VL, VU
- * ..
- * .. Array Arguments ..
- INTEGER ISUPPZ( * ), IWORK( * )
- REAL RWORK( * ), W( * )
- COMPLEX A( LDA, * ), WORK( * ), Z( LDZ, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ZERO, ONE, TWO
- PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0, TWO = 2.0E+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL ALLEIG, INDEIG, LOWER, LQUERY, TEST, VALEIG,
- $ WANTZ, TRYRAC
- CHARACTER ORDER
- INTEGER I, IEEEOK, IINFO, IMAX, INDIBL, INDIFL, INDISP,
- $ INDIWO, INDRD, INDRDD, INDRE, INDREE, INDRWK,
- $ INDTAU, INDWK, INDWKN, ISCALE, ITMP1, J, JJ,
- $ LIWMIN, LLWORK, LLRWORK, LLWRKN, LRWMIN,
- $ LWKOPT, LWMIN, NB, NSPLIT
- REAL ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
- $ SIGMA, SMLNUM, TMP1, VLL, VUU
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- INTEGER ILAENV
- REAL CLANSY, SLAMCH
- EXTERNAL LSAME, ILAENV, CLANSY, SLAMCH
- * ..
- * .. External Subroutines ..
- EXTERNAL CHETRD, CSSCAL, CSTEMR, CSTEIN, CSWAP, CUNMTR,
- $ SCOPY, SSCAL, SSTEBZ, SSTERF, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, MIN, REAL, SQRT
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- IEEEOK = ILAENV( 10, 'CHEEVR', 'N', 1, 2, 3, 4 )
- *
- LOWER = LSAME( UPLO, 'L' )
- WANTZ = LSAME( JOBZ, 'V' )
- ALLEIG = LSAME( RANGE, 'A' )
- VALEIG = LSAME( RANGE, 'V' )
- INDEIG = LSAME( RANGE, 'I' )
- *
- LQUERY = ( ( LWORK.EQ.-1 ) .OR. ( LRWORK.EQ.-1 ) .OR.
- $ ( LIWORK.EQ.-1 ) )
- *
- LRWMIN = MAX( 1, 24*N )
- LIWMIN = MAX( 1, 10*N )
- LWMIN = MAX( 1, 2*N )
- *
- INFO = 0
- IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
- INFO = -1
- ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
- INFO = -2
- ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
- INFO = -3
- ELSE IF( N.LT.0 ) THEN
- INFO = -4
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -6
- ELSE
- IF( VALEIG ) THEN
- IF( N.GT.0 .AND. VU.LE.VL )
- $ INFO = -8
- ELSE IF( INDEIG ) THEN
- IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
- INFO = -9
- ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
- INFO = -10
- END IF
- END IF
- END IF
- IF( INFO.EQ.0 ) THEN
- IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
- INFO = -15
- END IF
- END IF
- *
- IF( INFO.EQ.0 ) THEN
- NB = ILAENV( 1, 'CHETRD', UPLO, N, -1, -1, -1 )
- NB = MAX( NB, ILAENV( 1, 'CUNMTR', UPLO, N, -1, -1, -1 ) )
- LWKOPT = MAX( ( NB+1 )*N, LWMIN )
- WORK( 1 ) = LWKOPT
- RWORK( 1 ) = LRWMIN
- IWORK( 1 ) = LIWMIN
- *
- IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
- INFO = -18
- ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN
- INFO = -20
- ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
- INFO = -22
- END IF
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'CHEEVR', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
- *
- * Quick return if possible
- *
- M = 0
- IF( N.EQ.0 ) THEN
- WORK( 1 ) = 1
- RETURN
- END IF
- *
- IF( N.EQ.1 ) THEN
- WORK( 1 ) = 2
- IF( ALLEIG .OR. INDEIG ) THEN
- M = 1
- W( 1 ) = REAL( A( 1, 1 ) )
- ELSE
- IF( VL.LT.REAL( A( 1, 1 ) ) .AND. VU.GE.REAL( A( 1, 1 ) ) )
- $ THEN
- M = 1
- W( 1 ) = REAL( A( 1, 1 ) )
- END IF
- END IF
- IF( WANTZ ) THEN
- Z( 1, 1 ) = ONE
- ISUPPZ( 1 ) = 1
- ISUPPZ( 2 ) = 1
- END IF
- RETURN
- END IF
- *
- * Get machine constants.
- *
- SAFMIN = SLAMCH( 'Safe minimum' )
- EPS = SLAMCH( 'Precision' )
- SMLNUM = SAFMIN / EPS
- BIGNUM = ONE / SMLNUM
- RMIN = SQRT( SMLNUM )
- RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
- *
- * Scale matrix to allowable range, if necessary.
- *
- ISCALE = 0
- ABSTLL = ABSTOL
- IF (VALEIG) THEN
- VLL = VL
- VUU = VU
- END IF
- ANRM = CLANSY( 'M', UPLO, N, A, LDA, RWORK )
- IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
- ISCALE = 1
- SIGMA = RMIN / ANRM
- ELSE IF( ANRM.GT.RMAX ) THEN
- ISCALE = 1
- SIGMA = RMAX / ANRM
- END IF
- IF( ISCALE.EQ.1 ) THEN
- IF( LOWER ) THEN
- DO 10 J = 1, N
- CALL CSSCAL( N-J+1, SIGMA, A( J, J ), 1 )
- 10 CONTINUE
- ELSE
- DO 20 J = 1, N
- CALL CSSCAL( J, SIGMA, A( 1, J ), 1 )
- 20 CONTINUE
- END IF
- IF( ABSTOL.GT.0 )
- $ ABSTLL = ABSTOL*SIGMA
- IF( VALEIG ) THEN
- VLL = VL*SIGMA
- VUU = VU*SIGMA
- END IF
- END IF
-
- * Initialize indices into workspaces. Note: The IWORK indices are
- * used only if SSTERF or CSTEMR fail.
-
- * WORK(INDTAU:INDTAU+N-1) stores the complex scalar factors of the
- * elementary reflectors used in CHETRD.
- INDTAU = 1
- * INDWK is the starting offset of the remaining complex workspace,
- * and LLWORK is the remaining complex workspace size.
- INDWK = INDTAU + N
- LLWORK = LWORK - INDWK + 1
-
- * RWORK(INDRD:INDRD+N-1) stores the real tridiagonal's diagonal
- * entries.
- INDRD = 1
- * RWORK(INDRE:INDRE+N-1) stores the off-diagonal entries of the
- * tridiagonal matrix from CHETRD.
- INDRE = INDRD + N
- * RWORK(INDRDD:INDRDD+N-1) is a copy of the diagonal entries over
- * -written by CSTEMR (the SSTERF path copies the diagonal to W).
- INDRDD = INDRE + N
- * RWORK(INDREE:INDREE+N-1) is a copy of the off-diagonal entries over
- * -written while computing the eigenvalues in SSTERF and CSTEMR.
- INDREE = INDRDD + N
- * INDRWK is the starting offset of the left-over real workspace, and
- * LLRWORK is the remaining workspace size.
- INDRWK = INDREE + N
- LLRWORK = LRWORK - INDRWK + 1
-
- * IWORK(INDIBL:INDIBL+M-1) corresponds to IBLOCK in SSTEBZ and
- * stores the block indices of each of the M<=N eigenvalues.
- INDIBL = 1
- * IWORK(INDISP:INDISP+NSPLIT-1) corresponds to ISPLIT in SSTEBZ and
- * stores the starting and finishing indices of each block.
- INDISP = INDIBL + N
- * IWORK(INDIFL:INDIFL+N-1) stores the indices of eigenvectors
- * that corresponding to eigenvectors that fail to converge in
- * SSTEIN. This information is discarded; if any fail, the driver
- * returns INFO > 0.
- INDIFL = INDISP + N
- * INDIWO is the offset of the remaining integer workspace.
- INDIWO = INDIFL + N
-
- *
- * Call CHETRD to reduce Hermitian matrix to tridiagonal form.
- *
- CALL CHETRD( UPLO, N, A, LDA, RWORK( INDRD ), RWORK( INDRE ),
- $ WORK( INDTAU ), WORK( INDWK ), LLWORK, IINFO )
- *
- * If all eigenvalues are desired
- * then call SSTERF or CSTEMR and CUNMTR.
- *
- TEST = .FALSE.
- IF( INDEIG ) THEN
- IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
- TEST = .TRUE.
- END IF
- END IF
- IF( ( ALLEIG.OR.TEST ) .AND. ( IEEEOK.EQ.1 ) ) THEN
- IF( .NOT.WANTZ ) THEN
- CALL SCOPY( N, RWORK( INDRD ), 1, W, 1 )
- CALL SCOPY( N-1, RWORK( INDRE ), 1, RWORK( INDREE ), 1 )
- CALL SSTERF( N, W, RWORK( INDREE ), INFO )
- ELSE
- CALL SCOPY( N-1, RWORK( INDRE ), 1, RWORK( INDREE ), 1 )
- CALL SCOPY( N, RWORK( INDRD ), 1, RWORK( INDRDD ), 1 )
- *
- IF (ABSTOL .LE. TWO*N*EPS) THEN
- TRYRAC = .TRUE.
- ELSE
- TRYRAC = .FALSE.
- END IF
- CALL CSTEMR( JOBZ, 'A', N, RWORK( INDRDD ),
- $ RWORK( INDREE ), VL, VU, IL, IU, M, W,
- $ Z, LDZ, N, ISUPPZ, TRYRAC,
- $ RWORK( INDRWK ), LLRWORK,
- $ IWORK, LIWORK, INFO )
- *
- * Apply unitary matrix used in reduction to tridiagonal
- * form to eigenvectors returned by CSTEMR.
- *
- IF( WANTZ .AND. INFO.EQ.0 ) THEN
- INDWKN = INDWK
- LLWRKN = LWORK - INDWKN + 1
- CALL CUNMTR( 'L', UPLO, 'N', N, M, A, LDA,
- $ WORK( INDTAU ), Z, LDZ, WORK( INDWKN ),
- $ LLWRKN, IINFO )
- END IF
- END IF
- *
- *
- IF( INFO.EQ.0 ) THEN
- M = N
- GO TO 30
- END IF
- INFO = 0
- END IF
- *
- * Otherwise, call SSTEBZ and, if eigenvectors are desired, CSTEIN.
- * Also call SSTEBZ and CSTEIN if CSTEMR fails.
- *
- IF( WANTZ ) THEN
- ORDER = 'B'
- ELSE
- ORDER = 'E'
- END IF
-
- CALL SSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
- $ RWORK( INDRD ), RWORK( INDRE ), M, NSPLIT, W,
- $ IWORK( INDIBL ), IWORK( INDISP ), RWORK( INDRWK ),
- $ IWORK( INDIWO ), INFO )
- *
- IF( WANTZ ) THEN
- CALL CSTEIN( N, RWORK( INDRD ), RWORK( INDRE ), M, W,
- $ IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
- $ RWORK( INDRWK ), IWORK( INDIWO ), IWORK( INDIFL ),
- $ INFO )
- *
- * Apply unitary matrix used in reduction to tridiagonal
- * form to eigenvectors returned by CSTEIN.
- *
- INDWKN = INDWK
- LLWRKN = LWORK - INDWKN + 1
- CALL CUNMTR( 'L', UPLO, 'N', N, M, A, LDA, WORK( INDTAU ), Z,
- $ LDZ, WORK( INDWKN ), LLWRKN, IINFO )
- END IF
- *
- * If matrix was scaled, then rescale eigenvalues appropriately.
- *
- 30 CONTINUE
- IF( ISCALE.EQ.1 ) THEN
- IF( INFO.EQ.0 ) THEN
- IMAX = M
- ELSE
- IMAX = INFO - 1
- END IF
- CALL SSCAL( IMAX, ONE / SIGMA, W, 1 )
- END IF
- *
- * If eigenvalues are not in order, then sort them, along with
- * eigenvectors.
- *
- IF( WANTZ ) THEN
- DO 50 J = 1, M - 1
- I = 0
- TMP1 = W( J )
- DO 40 JJ = J + 1, M
- IF( W( JJ ).LT.TMP1 ) THEN
- I = JJ
- TMP1 = W( JJ )
- END IF
- 40 CONTINUE
- *
- IF( I.NE.0 ) THEN
- ITMP1 = IWORK( INDIBL+I-1 )
- W( I ) = W( J )
- IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
- W( J ) = TMP1
- IWORK( INDIBL+J-1 ) = ITMP1
- CALL CSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
- END IF
- 50 CONTINUE
- END IF
- *
- * Set WORK(1) to optimal workspace size.
- *
- WORK( 1 ) = LWKOPT
- RWORK( 1 ) = LRWMIN
- IWORK( 1 ) = LIWMIN
- *
- RETURN
- *
- * End of CHEEVR
- *
- END
|