|
- *> \brief <b> CHEEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for HE matrices</b>
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download CHEEVD + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cheevd.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cheevd.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cheevd.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CHEEVD( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, RWORK,
- * LRWORK, IWORK, LIWORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER JOBZ, UPLO
- * INTEGER INFO, LDA, LIWORK, LRWORK, LWORK, N
- * ..
- * .. Array Arguments ..
- * INTEGER IWORK( * )
- * REAL RWORK( * ), W( * )
- * COMPLEX A( LDA, * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CHEEVD computes all eigenvalues and, optionally, eigenvectors of a
- *> complex Hermitian matrix A. If eigenvectors are desired, it uses a
- *> divide and conquer algorithm.
- *>
- *> The divide and conquer algorithm makes very mild assumptions about
- *> floating point arithmetic. It will work on machines with a guard
- *> digit in add/subtract, or on those binary machines without guard
- *> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
- *> Cray-2. It could conceivably fail on hexadecimal or decimal machines
- *> without guard digits, but we know of none.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] JOBZ
- *> \verbatim
- *> JOBZ is CHARACTER*1
- *> = 'N': Compute eigenvalues only;
- *> = 'V': Compute eigenvalues and eigenvectors.
- *> \endverbatim
- *>
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> = 'U': Upper triangle of A is stored;
- *> = 'L': Lower triangle of A is stored.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is COMPLEX array, dimension (LDA, N)
- *> On entry, the Hermitian matrix A. If UPLO = 'U', the
- *> leading N-by-N upper triangular part of A contains the
- *> upper triangular part of the matrix A. If UPLO = 'L',
- *> the leading N-by-N lower triangular part of A contains
- *> the lower triangular part of the matrix A.
- *> On exit, if JOBZ = 'V', then if INFO = 0, A contains the
- *> orthonormal eigenvectors of the matrix A.
- *> If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
- *> or the upper triangle (if UPLO='U') of A, including the
- *> diagonal, is destroyed.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] W
- *> \verbatim
- *> W is REAL array, dimension (N)
- *> If INFO = 0, the eigenvalues in ascending order.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX array, dimension (MAX(1,LWORK))
- *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The length of the array WORK.
- *> If N <= 1, LWORK must be at least 1.
- *> If JOBZ = 'N' and N > 1, LWORK must be at least N + 1.
- *> If JOBZ = 'V' and N > 1, LWORK must be at least 2*N + N**2.
- *>
- *> If LWORK = -1, then a workspace query is assumed; the routine
- *> only calculates the optimal sizes of the WORK, RWORK and
- *> IWORK arrays, returns these values as the first entries of
- *> the WORK, RWORK and IWORK arrays, and no error message
- *> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is REAL array,
- *> dimension (LRWORK)
- *> On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
- *> \endverbatim
- *>
- *> \param[in] LRWORK
- *> \verbatim
- *> LRWORK is INTEGER
- *> The dimension of the array RWORK.
- *> If N <= 1, LRWORK must be at least 1.
- *> If JOBZ = 'N' and N > 1, LRWORK must be at least N.
- *> If JOBZ = 'V' and N > 1, LRWORK must be at least
- *> 1 + 5*N + 2*N**2.
- *>
- *> If LRWORK = -1, then a workspace query is assumed; the
- *> routine only calculates the optimal sizes of the WORK, RWORK
- *> and IWORK arrays, returns these values as the first entries
- *> of the WORK, RWORK and IWORK arrays, and no error message
- *> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] IWORK
- *> \verbatim
- *> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
- *> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
- *> \endverbatim
- *>
- *> \param[in] LIWORK
- *> \verbatim
- *> LIWORK is INTEGER
- *> The dimension of the array IWORK.
- *> If N <= 1, LIWORK must be at least 1.
- *> If JOBZ = 'N' and N > 1, LIWORK must be at least 1.
- *> If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
- *>
- *> If LIWORK = -1, then a workspace query is assumed; the
- *> routine only calculates the optimal sizes of the WORK, RWORK
- *> and IWORK arrays, returns these values as the first entries
- *> of the WORK, RWORK and IWORK arrays, and no error message
- *> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> > 0: if INFO = i and JOBZ = 'N', then the algorithm failed
- *> to converge; i off-diagonal elements of an intermediate
- *> tridiagonal form did not converge to zero;
- *> if INFO = i and JOBZ = 'V', then the algorithm failed
- *> to compute an eigenvalue while working on the submatrix
- *> lying in rows and columns INFO/(N+1) through
- *> mod(INFO,N+1).
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complexHEeigen
- *
- *> \par Further Details:
- * =====================
- *>
- *> Modified description of INFO. Sven, 16 Feb 05.
- *
- *> \par Contributors:
- * ==================
- *>
- *> Jeff Rutter, Computer Science Division, University of California
- *> at Berkeley, USA
- *>
- * =====================================================================
- SUBROUTINE CHEEVD( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, RWORK,
- $ LRWORK, IWORK, LIWORK, INFO )
- *
- * -- LAPACK driver routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER JOBZ, UPLO
- INTEGER INFO, LDA, LIWORK, LRWORK, LWORK, N
- * ..
- * .. Array Arguments ..
- INTEGER IWORK( * )
- REAL RWORK( * ), W( * )
- COMPLEX A( LDA, * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ZERO, ONE
- PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 )
- COMPLEX CONE
- PARAMETER ( CONE = ( 1.0E0, 0.0E0 ) )
- * ..
- * .. Local Scalars ..
- LOGICAL LOWER, LQUERY, WANTZ
- INTEGER IINFO, IMAX, INDE, INDRWK, INDTAU, INDWK2,
- $ INDWRK, ISCALE, LIOPT, LIWMIN, LLRWK, LLWORK,
- $ LLWRK2, LOPT, LROPT, LRWMIN, LWMIN
- REAL ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
- $ SMLNUM
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- INTEGER ILAENV
- REAL CLANHE, SLAMCH
- EXTERNAL ILAENV, LSAME, CLANHE, SLAMCH
- * ..
- * .. External Subroutines ..
- EXTERNAL CHETRD, CLACPY, CLASCL, CSTEDC, CUNMTR, SSCAL,
- $ SSTERF, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, SQRT
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- WANTZ = LSAME( JOBZ, 'V' )
- LOWER = LSAME( UPLO, 'L' )
- LQUERY = ( LWORK.EQ.-1 .OR. LRWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
- *
- INFO = 0
- IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
- INFO = -1
- ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
- INFO = -2
- ELSE IF( N.LT.0 ) THEN
- INFO = -3
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -5
- END IF
- *
- IF( INFO.EQ.0 ) THEN
- IF( N.LE.1 ) THEN
- LWMIN = 1
- LRWMIN = 1
- LIWMIN = 1
- LOPT = LWMIN
- LROPT = LRWMIN
- LIOPT = LIWMIN
- ELSE
- IF( WANTZ ) THEN
- LWMIN = 2*N + N*N
- LRWMIN = 1 + 5*N + 2*N**2
- LIWMIN = 3 + 5*N
- ELSE
- LWMIN = N + 1
- LRWMIN = N
- LIWMIN = 1
- END IF
- LOPT = MAX( LWMIN, N +
- $ N*ILAENV( 1, 'CHETRD', UPLO, N, -1, -1, -1 ) )
- LROPT = LRWMIN
- LIOPT = LIWMIN
- END IF
- WORK( 1 ) = LOPT
- RWORK( 1 ) = LROPT
- IWORK( 1 ) = LIOPT
- *
- IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
- INFO = -8
- ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN
- INFO = -10
- ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
- INFO = -12
- END IF
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'CHEEVD', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 )
- $ RETURN
- *
- IF( N.EQ.1 ) THEN
- W( 1 ) = REAL( A( 1, 1 ) )
- IF( WANTZ )
- $ A( 1, 1 ) = CONE
- RETURN
- END IF
- *
- * Get machine constants.
- *
- SAFMIN = SLAMCH( 'Safe minimum' )
- EPS = SLAMCH( 'Precision' )
- SMLNUM = SAFMIN / EPS
- BIGNUM = ONE / SMLNUM
- RMIN = SQRT( SMLNUM )
- RMAX = SQRT( BIGNUM )
- *
- * Scale matrix to allowable range, if necessary.
- *
- ANRM = CLANHE( 'M', UPLO, N, A, LDA, RWORK )
- ISCALE = 0
- IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
- ISCALE = 1
- SIGMA = RMIN / ANRM
- ELSE IF( ANRM.GT.RMAX ) THEN
- ISCALE = 1
- SIGMA = RMAX / ANRM
- END IF
- IF( ISCALE.EQ.1 )
- $ CALL CLASCL( UPLO, 0, 0, ONE, SIGMA, N, N, A, LDA, INFO )
- *
- * Call CHETRD to reduce Hermitian matrix to tridiagonal form.
- *
- INDE = 1
- INDTAU = 1
- INDWRK = INDTAU + N
- INDRWK = INDE + N
- INDWK2 = INDWRK + N*N
- LLWORK = LWORK - INDWRK + 1
- LLWRK2 = LWORK - INDWK2 + 1
- LLRWK = LRWORK - INDRWK + 1
- CALL CHETRD( UPLO, N, A, LDA, W, RWORK( INDE ), WORK( INDTAU ),
- $ WORK( INDWRK ), LLWORK, IINFO )
- *
- * For eigenvalues only, call SSTERF. For eigenvectors, first call
- * CSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the
- * tridiagonal matrix, then call CUNMTR to multiply it to the
- * Householder transformations represented as Householder vectors in
- * A.
- *
- IF( .NOT.WANTZ ) THEN
- CALL SSTERF( N, W, RWORK( INDE ), INFO )
- ELSE
- CALL CSTEDC( 'I', N, W, RWORK( INDE ), WORK( INDWRK ), N,
- $ WORK( INDWK2 ), LLWRK2, RWORK( INDRWK ), LLRWK,
- $ IWORK, LIWORK, INFO )
- CALL CUNMTR( 'L', UPLO, 'N', N, N, A, LDA, WORK( INDTAU ),
- $ WORK( INDWRK ), N, WORK( INDWK2 ), LLWRK2, IINFO )
- CALL CLACPY( 'A', N, N, WORK( INDWRK ), N, A, LDA )
- END IF
- *
- * If matrix was scaled, then rescale eigenvalues appropriately.
- *
- IF( ISCALE.EQ.1 ) THEN
- IF( INFO.EQ.0 ) THEN
- IMAX = N
- ELSE
- IMAX = INFO - 1
- END IF
- CALL SSCAL( IMAX, ONE / SIGMA, W, 1 )
- END IF
- *
- WORK( 1 ) = LOPT
- RWORK( 1 ) = LROPT
- IWORK( 1 ) = LIOPT
- *
- RETURN
- *
- * End of CHEEVD
- *
- END
|