|
- *> \brief \b CHBGVX
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download CHBGVX + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chbgvx.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chbgvx.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chbgvx.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CHBGVX( JOBZ, RANGE, UPLO, N, KA, KB, AB, LDAB, BB,
- * LDBB, Q, LDQ, VL, VU, IL, IU, ABSTOL, M, W, Z,
- * LDZ, WORK, RWORK, IWORK, IFAIL, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER JOBZ, RANGE, UPLO
- * INTEGER IL, INFO, IU, KA, KB, LDAB, LDBB, LDQ, LDZ, M,
- * $ N
- * REAL ABSTOL, VL, VU
- * ..
- * .. Array Arguments ..
- * INTEGER IFAIL( * ), IWORK( * )
- * REAL RWORK( * ), W( * )
- * COMPLEX AB( LDAB, * ), BB( LDBB, * ), Q( LDQ, * ),
- * $ WORK( * ), Z( LDZ, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CHBGVX computes all the eigenvalues, and optionally, the eigenvectors
- *> of a complex generalized Hermitian-definite banded eigenproblem, of
- *> the form A*x=(lambda)*B*x. Here A and B are assumed to be Hermitian
- *> and banded, and B is also positive definite. Eigenvalues and
- *> eigenvectors can be selected by specifying either all eigenvalues,
- *> a range of values or a range of indices for the desired eigenvalues.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] JOBZ
- *> \verbatim
- *> JOBZ is CHARACTER*1
- *> = 'N': Compute eigenvalues only;
- *> = 'V': Compute eigenvalues and eigenvectors.
- *> \endverbatim
- *>
- *> \param[in] RANGE
- *> \verbatim
- *> RANGE is CHARACTER*1
- *> = 'A': all eigenvalues will be found;
- *> = 'V': all eigenvalues in the half-open interval (VL,VU]
- *> will be found;
- *> = 'I': the IL-th through IU-th eigenvalues will be found.
- *> \endverbatim
- *>
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> = 'U': Upper triangles of A and B are stored;
- *> = 'L': Lower triangles of A and B are stored.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrices A and B. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] KA
- *> \verbatim
- *> KA is INTEGER
- *> The number of superdiagonals of the matrix A if UPLO = 'U',
- *> or the number of subdiagonals if UPLO = 'L'. KA >= 0.
- *> \endverbatim
- *>
- *> \param[in] KB
- *> \verbatim
- *> KB is INTEGER
- *> The number of superdiagonals of the matrix B if UPLO = 'U',
- *> or the number of subdiagonals if UPLO = 'L'. KB >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] AB
- *> \verbatim
- *> AB is COMPLEX array, dimension (LDAB, N)
- *> On entry, the upper or lower triangle of the Hermitian band
- *> matrix A, stored in the first ka+1 rows of the array. The
- *> j-th column of A is stored in the j-th column of the array AB
- *> as follows:
- *> if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
- *> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka).
- *>
- *> On exit, the contents of AB are destroyed.
- *> \endverbatim
- *>
- *> \param[in] LDAB
- *> \verbatim
- *> LDAB is INTEGER
- *> The leading dimension of the array AB. LDAB >= KA+1.
- *> \endverbatim
- *>
- *> \param[in,out] BB
- *> \verbatim
- *> BB is COMPLEX array, dimension (LDBB, N)
- *> On entry, the upper or lower triangle of the Hermitian band
- *> matrix B, stored in the first kb+1 rows of the array. The
- *> j-th column of B is stored in the j-th column of the array BB
- *> as follows:
- *> if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
- *> if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb).
- *>
- *> On exit, the factor S from the split Cholesky factorization
- *> B = S**H*S, as returned by CPBSTF.
- *> \endverbatim
- *>
- *> \param[in] LDBB
- *> \verbatim
- *> LDBB is INTEGER
- *> The leading dimension of the array BB. LDBB >= KB+1.
- *> \endverbatim
- *>
- *> \param[out] Q
- *> \verbatim
- *> Q is COMPLEX array, dimension (LDQ, N)
- *> If JOBZ = 'V', the n-by-n matrix used in the reduction of
- *> A*x = (lambda)*B*x to standard form, i.e. C*x = (lambda)*x,
- *> and consequently C to tridiagonal form.
- *> If JOBZ = 'N', the array Q is not referenced.
- *> \endverbatim
- *>
- *> \param[in] LDQ
- *> \verbatim
- *> LDQ is INTEGER
- *> The leading dimension of the array Q. If JOBZ = 'N',
- *> LDQ >= 1. If JOBZ = 'V', LDQ >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in] VL
- *> \verbatim
- *> VL is REAL
- *>
- *> If RANGE='V', the lower bound of the interval to
- *> be searched for eigenvalues. VL < VU.
- *> Not referenced if RANGE = 'A' or 'I'.
- *> \endverbatim
- *>
- *> \param[in] VU
- *> \verbatim
- *> VU is REAL
- *>
- *> If RANGE='V', the upper bound of the interval to
- *> be searched for eigenvalues. VL < VU.
- *> Not referenced if RANGE = 'A' or 'I'.
- *> \endverbatim
- *>
- *> \param[in] IL
- *> \verbatim
- *> IL is INTEGER
- *>
- *> If RANGE='I', the index of the
- *> smallest eigenvalue to be returned.
- *> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
- *> Not referenced if RANGE = 'A' or 'V'.
- *> \endverbatim
- *>
- *> \param[in] IU
- *> \verbatim
- *> IU is INTEGER
- *>
- *> If RANGE='I', the index of the
- *> largest eigenvalue to be returned.
- *> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
- *> Not referenced if RANGE = 'A' or 'V'.
- *> \endverbatim
- *>
- *> \param[in] ABSTOL
- *> \verbatim
- *> ABSTOL is REAL
- *> The absolute error tolerance for the eigenvalues.
- *> An approximate eigenvalue is accepted as converged
- *> when it is determined to lie in an interval [a,b]
- *> of width less than or equal to
- *>
- *> ABSTOL + EPS * max( |a|,|b| ) ,
- *>
- *> where EPS is the machine precision. If ABSTOL is less than
- *> or equal to zero, then EPS*|T| will be used in its place,
- *> where |T| is the 1-norm of the tridiagonal matrix obtained
- *> by reducing AP to tridiagonal form.
- *>
- *> Eigenvalues will be computed most accurately when ABSTOL is
- *> set to twice the underflow threshold 2*SLAMCH('S'), not zero.
- *> If this routine returns with INFO>0, indicating that some
- *> eigenvectors did not converge, try setting ABSTOL to
- *> 2*SLAMCH('S').
- *> \endverbatim
- *>
- *> \param[out] M
- *> \verbatim
- *> M is INTEGER
- *> The total number of eigenvalues found. 0 <= M <= N.
- *> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
- *> \endverbatim
- *>
- *> \param[out] W
- *> \verbatim
- *> W is REAL array, dimension (N)
- *> If INFO = 0, the eigenvalues in ascending order.
- *> \endverbatim
- *>
- *> \param[out] Z
- *> \verbatim
- *> Z is COMPLEX array, dimension (LDZ, N)
- *> If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
- *> eigenvectors, with the i-th column of Z holding the
- *> eigenvector associated with W(i). The eigenvectors are
- *> normalized so that Z**H*B*Z = I.
- *> If JOBZ = 'N', then Z is not referenced.
- *> \endverbatim
- *>
- *> \param[in] LDZ
- *> \verbatim
- *> LDZ is INTEGER
- *> The leading dimension of the array Z. LDZ >= 1, and if
- *> JOBZ = 'V', LDZ >= N.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is REAL array, dimension (7*N)
- *> \endverbatim
- *>
- *> \param[out] IWORK
- *> \verbatim
- *> IWORK is INTEGER array, dimension (5*N)
- *> \endverbatim
- *>
- *> \param[out] IFAIL
- *> \verbatim
- *> IFAIL is INTEGER array, dimension (N)
- *> If JOBZ = 'V', then if INFO = 0, the first M elements of
- *> IFAIL are zero. If INFO > 0, then IFAIL contains the
- *> indices of the eigenvectors that failed to converge.
- *> If JOBZ = 'N', then IFAIL is not referenced.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> > 0: if INFO = i, and i is:
- *> <= N: then i eigenvectors failed to converge. Their
- *> indices are stored in array IFAIL.
- *> > N: if INFO = N + i, for 1 <= i <= N, then CPBSTF
- *> returned INFO = i: B is not positive definite.
- *> The factorization of B could not be completed and
- *> no eigenvalues or eigenvectors were computed.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complexOTHEReigen
- *
- *> \par Contributors:
- * ==================
- *>
- *> Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
- *
- * =====================================================================
- SUBROUTINE CHBGVX( JOBZ, RANGE, UPLO, N, KA, KB, AB, LDAB, BB,
- $ LDBB, Q, LDQ, VL, VU, IL, IU, ABSTOL, M, W, Z,
- $ LDZ, WORK, RWORK, IWORK, IFAIL, INFO )
- *
- * -- LAPACK driver routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER JOBZ, RANGE, UPLO
- INTEGER IL, INFO, IU, KA, KB, LDAB, LDBB, LDQ, LDZ, M,
- $ N
- REAL ABSTOL, VL, VU
- * ..
- * .. Array Arguments ..
- INTEGER IFAIL( * ), IWORK( * )
- REAL RWORK( * ), W( * )
- COMPLEX AB( LDAB, * ), BB( LDBB, * ), Q( LDQ, * ),
- $ WORK( * ), Z( LDZ, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ZERO
- PARAMETER ( ZERO = 0.0E+0 )
- COMPLEX CZERO, CONE
- PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ),
- $ CONE = ( 1.0E+0, 0.0E+0 ) )
- * ..
- * .. Local Scalars ..
- LOGICAL ALLEIG, INDEIG, TEST, UPPER, VALEIG, WANTZ
- CHARACTER ORDER, VECT
- INTEGER I, IINFO, INDD, INDE, INDEE, INDIBL, INDISP,
- $ INDIWK, INDRWK, INDWRK, ITMP1, J, JJ, NSPLIT
- REAL TMP1
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. External Subroutines ..
- EXTERNAL CCOPY, CGEMV, CHBGST, CHBTRD, CLACPY, CPBSTF,
- $ CSTEIN, CSTEQR, CSWAP, SCOPY, SSTEBZ, SSTERF,
- $ XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MIN
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- WANTZ = LSAME( JOBZ, 'V' )
- UPPER = LSAME( UPLO, 'U' )
- ALLEIG = LSAME( RANGE, 'A' )
- VALEIG = LSAME( RANGE, 'V' )
- INDEIG = LSAME( RANGE, 'I' )
- *
- INFO = 0
- IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
- INFO = -1
- ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
- INFO = -2
- ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
- INFO = -3
- ELSE IF( N.LT.0 ) THEN
- INFO = -4
- ELSE IF( KA.LT.0 ) THEN
- INFO = -5
- ELSE IF( KB.LT.0 .OR. KB.GT.KA ) THEN
- INFO = -6
- ELSE IF( LDAB.LT.KA+1 ) THEN
- INFO = -8
- ELSE IF( LDBB.LT.KB+1 ) THEN
- INFO = -10
- ELSE IF( LDQ.LT.1 .OR. ( WANTZ .AND. LDQ.LT.N ) ) THEN
- INFO = -12
- ELSE
- IF( VALEIG ) THEN
- IF( N.GT.0 .AND. VU.LE.VL )
- $ INFO = -14
- ELSE IF( INDEIG ) THEN
- IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
- INFO = -15
- ELSE IF ( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
- INFO = -16
- END IF
- END IF
- END IF
- IF( INFO.EQ.0) THEN
- IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
- INFO = -21
- END IF
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'CHBGVX', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- M = 0
- IF( N.EQ.0 )
- $ RETURN
- *
- * Form a split Cholesky factorization of B.
- *
- CALL CPBSTF( UPLO, N, KB, BB, LDBB, INFO )
- IF( INFO.NE.0 ) THEN
- INFO = N + INFO
- RETURN
- END IF
- *
- * Transform problem to standard eigenvalue problem.
- *
- CALL CHBGST( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, Q, LDQ,
- $ WORK, RWORK, IINFO )
- *
- * Solve the standard eigenvalue problem.
- * Reduce Hermitian band matrix to tridiagonal form.
- *
- INDD = 1
- INDE = INDD + N
- INDRWK = INDE + N
- INDWRK = 1
- IF( WANTZ ) THEN
- VECT = 'U'
- ELSE
- VECT = 'N'
- END IF
- CALL CHBTRD( VECT, UPLO, N, KA, AB, LDAB, RWORK( INDD ),
- $ RWORK( INDE ), Q, LDQ, WORK( INDWRK ), IINFO )
- *
- * If all eigenvalues are desired and ABSTOL is less than or equal
- * to zero, then call SSTERF or CSTEQR. If this fails for some
- * eigenvalue, then try SSTEBZ.
- *
- TEST = .FALSE.
- IF( INDEIG ) THEN
- IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
- TEST = .TRUE.
- END IF
- END IF
- IF( ( ALLEIG .OR. TEST ) .AND. ( ABSTOL.LE.ZERO ) ) THEN
- CALL SCOPY( N, RWORK( INDD ), 1, W, 1 )
- INDEE = INDRWK + 2*N
- CALL SCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
- IF( .NOT.WANTZ ) THEN
- CALL SSTERF( N, W, RWORK( INDEE ), INFO )
- ELSE
- CALL CLACPY( 'A', N, N, Q, LDQ, Z, LDZ )
- CALL CSTEQR( JOBZ, N, W, RWORK( INDEE ), Z, LDZ,
- $ RWORK( INDRWK ), INFO )
- IF( INFO.EQ.0 ) THEN
- DO 10 I = 1, N
- IFAIL( I ) = 0
- 10 CONTINUE
- END IF
- END IF
- IF( INFO.EQ.0 ) THEN
- M = N
- GO TO 30
- END IF
- INFO = 0
- END IF
- *
- * Otherwise, call SSTEBZ and, if eigenvectors are desired,
- * call CSTEIN.
- *
- IF( WANTZ ) THEN
- ORDER = 'B'
- ELSE
- ORDER = 'E'
- END IF
- INDIBL = 1
- INDISP = INDIBL + N
- INDIWK = INDISP + N
- CALL SSTEBZ( RANGE, ORDER, N, VL, VU, IL, IU, ABSTOL,
- $ RWORK( INDD ), RWORK( INDE ), M, NSPLIT, W,
- $ IWORK( INDIBL ), IWORK( INDISP ), RWORK( INDRWK ),
- $ IWORK( INDIWK ), INFO )
- *
- IF( WANTZ ) THEN
- CALL CSTEIN( N, RWORK( INDD ), RWORK( INDE ), M, W,
- $ IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
- $ RWORK( INDRWK ), IWORK( INDIWK ), IFAIL, INFO )
- *
- * Apply unitary matrix used in reduction to tridiagonal
- * form to eigenvectors returned by CSTEIN.
- *
- DO 20 J = 1, M
- CALL CCOPY( N, Z( 1, J ), 1, WORK( 1 ), 1 )
- CALL CGEMV( 'N', N, N, CONE, Q, LDQ, WORK, 1, CZERO,
- $ Z( 1, J ), 1 )
- 20 CONTINUE
- END IF
- *
- 30 CONTINUE
- *
- * If eigenvalues are not in order, then sort them, along with
- * eigenvectors.
- *
- IF( WANTZ ) THEN
- DO 50 J = 1, M - 1
- I = 0
- TMP1 = W( J )
- DO 40 JJ = J + 1, M
- IF( W( JJ ).LT.TMP1 ) THEN
- I = JJ
- TMP1 = W( JJ )
- END IF
- 40 CONTINUE
- *
- IF( I.NE.0 ) THEN
- ITMP1 = IWORK( INDIBL+I-1 )
- W( I ) = W( J )
- IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
- W( J ) = TMP1
- IWORK( INDIBL+J-1 ) = ITMP1
- CALL CSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
- IF( INFO.NE.0 ) THEN
- ITMP1 = IFAIL( I )
- IFAIL( I ) = IFAIL( J )
- IFAIL( J ) = ITMP1
- END IF
- END IF
- 50 CONTINUE
- END IF
- *
- RETURN
- *
- * End of CHBGVX
- *
- END
|