|
- *> \brief \b CHBGVD
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download CHBGVD + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chbgvd.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chbgvd.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chbgvd.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CHBGVD( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W,
- * Z, LDZ, WORK, LWORK, RWORK, LRWORK, IWORK,
- * LIWORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER JOBZ, UPLO
- * INTEGER INFO, KA, KB, LDAB, LDBB, LDZ, LIWORK, LRWORK,
- * $ LWORK, N
- * ..
- * .. Array Arguments ..
- * INTEGER IWORK( * )
- * REAL RWORK( * ), W( * )
- * COMPLEX AB( LDAB, * ), BB( LDBB, * ), WORK( * ),
- * $ Z( LDZ, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CHBGVD computes all the eigenvalues, and optionally, the eigenvectors
- *> of a complex generalized Hermitian-definite banded eigenproblem, of
- *> the form A*x=(lambda)*B*x. Here A and B are assumed to be Hermitian
- *> and banded, and B is also positive definite. If eigenvectors are
- *> desired, it uses a divide and conquer algorithm.
- *>
- *> The divide and conquer algorithm makes very mild assumptions about
- *> floating point arithmetic. It will work on machines with a guard
- *> digit in add/subtract, or on those binary machines without guard
- *> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
- *> Cray-2. It could conceivably fail on hexadecimal or decimal machines
- *> without guard digits, but we know of none.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] JOBZ
- *> \verbatim
- *> JOBZ is CHARACTER*1
- *> = 'N': Compute eigenvalues only;
- *> = 'V': Compute eigenvalues and eigenvectors.
- *> \endverbatim
- *>
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> = 'U': Upper triangles of A and B are stored;
- *> = 'L': Lower triangles of A and B are stored.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrices A and B. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] KA
- *> \verbatim
- *> KA is INTEGER
- *> The number of superdiagonals of the matrix A if UPLO = 'U',
- *> or the number of subdiagonals if UPLO = 'L'. KA >= 0.
- *> \endverbatim
- *>
- *> \param[in] KB
- *> \verbatim
- *> KB is INTEGER
- *> The number of superdiagonals of the matrix B if UPLO = 'U',
- *> or the number of subdiagonals if UPLO = 'L'. KB >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] AB
- *> \verbatim
- *> AB is COMPLEX array, dimension (LDAB, N)
- *> On entry, the upper or lower triangle of the Hermitian band
- *> matrix A, stored in the first ka+1 rows of the array. The
- *> j-th column of A is stored in the j-th column of the array AB
- *> as follows:
- *> if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
- *> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka).
- *>
- *> On exit, the contents of AB are destroyed.
- *> \endverbatim
- *>
- *> \param[in] LDAB
- *> \verbatim
- *> LDAB is INTEGER
- *> The leading dimension of the array AB. LDAB >= KA+1.
- *> \endverbatim
- *>
- *> \param[in,out] BB
- *> \verbatim
- *> BB is COMPLEX array, dimension (LDBB, N)
- *> On entry, the upper or lower triangle of the Hermitian band
- *> matrix B, stored in the first kb+1 rows of the array. The
- *> j-th column of B is stored in the j-th column of the array BB
- *> as follows:
- *> if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
- *> if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb).
- *>
- *> On exit, the factor S from the split Cholesky factorization
- *> B = S**H*S, as returned by CPBSTF.
- *> \endverbatim
- *>
- *> \param[in] LDBB
- *> \verbatim
- *> LDBB is INTEGER
- *> The leading dimension of the array BB. LDBB >= KB+1.
- *> \endverbatim
- *>
- *> \param[out] W
- *> \verbatim
- *> W is REAL array, dimension (N)
- *> If INFO = 0, the eigenvalues in ascending order.
- *> \endverbatim
- *>
- *> \param[out] Z
- *> \verbatim
- *> Z is COMPLEX array, dimension (LDZ, N)
- *> If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
- *> eigenvectors, with the i-th column of Z holding the
- *> eigenvector associated with W(i). The eigenvectors are
- *> normalized so that Z**H*B*Z = I.
- *> If JOBZ = 'N', then Z is not referenced.
- *> \endverbatim
- *>
- *> \param[in] LDZ
- *> \verbatim
- *> LDZ is INTEGER
- *> The leading dimension of the array Z. LDZ >= 1, and if
- *> JOBZ = 'V', LDZ >= N.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX array, dimension (MAX(1,LWORK))
- *> On exit, if INFO=0, WORK(1) returns the optimal LWORK.
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The dimension of the array WORK.
- *> If N <= 1, LWORK >= 1.
- *> If JOBZ = 'N' and N > 1, LWORK >= N.
- *> If JOBZ = 'V' and N > 1, LWORK >= 2*N**2.
- *>
- *> If LWORK = -1, then a workspace query is assumed; the routine
- *> only calculates the optimal sizes of the WORK, RWORK and
- *> IWORK arrays, returns these values as the first entries of
- *> the WORK, RWORK and IWORK arrays, and no error message
- *> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is REAL array, dimension (MAX(1,LRWORK))
- *> On exit, if INFO=0, RWORK(1) returns the optimal LRWORK.
- *> \endverbatim
- *>
- *> \param[in] LRWORK
- *> \verbatim
- *> LRWORK is INTEGER
- *> The dimension of array RWORK.
- *> If N <= 1, LRWORK >= 1.
- *> If JOBZ = 'N' and N > 1, LRWORK >= N.
- *> If JOBZ = 'V' and N > 1, LRWORK >= 1 + 5*N + 2*N**2.
- *>
- *> If LRWORK = -1, then a workspace query is assumed; the
- *> routine only calculates the optimal sizes of the WORK, RWORK
- *> and IWORK arrays, returns these values as the first entries
- *> of the WORK, RWORK and IWORK arrays, and no error message
- *> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] IWORK
- *> \verbatim
- *> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
- *> On exit, if INFO=0, IWORK(1) returns the optimal LIWORK.
- *> \endverbatim
- *>
- *> \param[in] LIWORK
- *> \verbatim
- *> LIWORK is INTEGER
- *> The dimension of array IWORK.
- *> If JOBZ = 'N' or N <= 1, LIWORK >= 1.
- *> If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N.
- *>
- *> If LIWORK = -1, then a workspace query is assumed; the
- *> routine only calculates the optimal sizes of the WORK, RWORK
- *> and IWORK arrays, returns these values as the first entries
- *> of the WORK, RWORK and IWORK arrays, and no error message
- *> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> > 0: if INFO = i, and i is:
- *> <= N: the algorithm failed to converge:
- *> i off-diagonal elements of an intermediate
- *> tridiagonal form did not converge to zero;
- *> > N: if INFO = N + i, for 1 <= i <= N, then CPBSTF
- *> returned INFO = i: B is not positive definite.
- *> The factorization of B could not be completed and
- *> no eigenvalues or eigenvectors were computed.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complexOTHEReigen
- *
- *> \par Contributors:
- * ==================
- *>
- *> Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
- *
- * =====================================================================
- SUBROUTINE CHBGVD( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W,
- $ Z, LDZ, WORK, LWORK, RWORK, LRWORK, IWORK,
- $ LIWORK, INFO )
- *
- * -- LAPACK driver routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER JOBZ, UPLO
- INTEGER INFO, KA, KB, LDAB, LDBB, LDZ, LIWORK, LRWORK,
- $ LWORK, N
- * ..
- * .. Array Arguments ..
- INTEGER IWORK( * )
- REAL RWORK( * ), W( * )
- COMPLEX AB( LDAB, * ), BB( LDBB, * ), WORK( * ),
- $ Z( LDZ, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- COMPLEX CONE, CZERO
- PARAMETER ( CONE = ( 1.0E+0, 0.0E+0 ),
- $ CZERO = ( 0.0E+0, 0.0E+0 ) )
- * ..
- * .. Local Scalars ..
- LOGICAL LQUERY, UPPER, WANTZ
- CHARACTER VECT
- INTEGER IINFO, INDE, INDWK2, INDWRK, LIWMIN, LLRWK,
- $ LLWK2, LRWMIN, LWMIN
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. External Subroutines ..
- EXTERNAL SSTERF, XERBLA, CGEMM, CHBGST, CHBTRD, CLACPY,
- $ CPBSTF, CSTEDC
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- WANTZ = LSAME( JOBZ, 'V' )
- UPPER = LSAME( UPLO, 'U' )
- LQUERY = ( LWORK.EQ.-1 .OR. LRWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
- *
- INFO = 0
- IF( N.LE.1 ) THEN
- LWMIN = 1+N
- LRWMIN = 1+N
- LIWMIN = 1
- ELSE IF( WANTZ ) THEN
- LWMIN = 2*N**2
- LRWMIN = 1 + 5*N + 2*N**2
- LIWMIN = 3 + 5*N
- ELSE
- LWMIN = N
- LRWMIN = N
- LIWMIN = 1
- END IF
- IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
- INFO = -1
- ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
- INFO = -2
- ELSE IF( N.LT.0 ) THEN
- INFO = -3
- ELSE IF( KA.LT.0 ) THEN
- INFO = -4
- ELSE IF( KB.LT.0 .OR. KB.GT.KA ) THEN
- INFO = -5
- ELSE IF( LDAB.LT.KA+1 ) THEN
- INFO = -7
- ELSE IF( LDBB.LT.KB+1 ) THEN
- INFO = -9
- ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
- INFO = -12
- END IF
- *
- IF( INFO.EQ.0 ) THEN
- WORK( 1 ) = LWMIN
- RWORK( 1 ) = LRWMIN
- IWORK( 1 ) = LIWMIN
- *
- IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
- INFO = -14
- ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN
- INFO = -16
- ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
- INFO = -18
- END IF
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'CHBGVD', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 )
- $ RETURN
- *
- * Form a split Cholesky factorization of B.
- *
- CALL CPBSTF( UPLO, N, KB, BB, LDBB, INFO )
- IF( INFO.NE.0 ) THEN
- INFO = N + INFO
- RETURN
- END IF
- *
- * Transform problem to standard eigenvalue problem.
- *
- INDE = 1
- INDWRK = INDE + N
- INDWK2 = 1 + N*N
- LLWK2 = LWORK - INDWK2 + 2
- LLRWK = LRWORK - INDWRK + 2
- CALL CHBGST( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, Z, LDZ,
- $ WORK, RWORK, IINFO )
- *
- * Reduce Hermitian band matrix to tridiagonal form.
- *
- IF( WANTZ ) THEN
- VECT = 'U'
- ELSE
- VECT = 'N'
- END IF
- CALL CHBTRD( VECT, UPLO, N, KA, AB, LDAB, W, RWORK( INDE ), Z,
- $ LDZ, WORK, IINFO )
- *
- * For eigenvalues only, call SSTERF. For eigenvectors, call CSTEDC.
- *
- IF( .NOT.WANTZ ) THEN
- CALL SSTERF( N, W, RWORK( INDE ), INFO )
- ELSE
- CALL CSTEDC( 'I', N, W, RWORK( INDE ), WORK, N, WORK( INDWK2 ),
- $ LLWK2, RWORK( INDWRK ), LLRWK, IWORK, LIWORK,
- $ INFO )
- CALL CGEMM( 'N', 'N', N, N, N, CONE, Z, LDZ, WORK, N, CZERO,
- $ WORK( INDWK2 ), N )
- CALL CLACPY( 'A', N, N, WORK( INDWK2 ), N, Z, LDZ )
- END IF
- *
- WORK( 1 ) = LWMIN
- RWORK( 1 ) = LRWMIN
- IWORK( 1 ) = LIWMIN
- RETURN
- *
- * End of CHBGVD
- *
- END
|