|
- *> \brief \b CGESC2 solves a system of linear equations using the LU factorization with complete pivoting computed by sgetc2.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download CGESC2 + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgesc2.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgesc2.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgesc2.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CGESC2( N, A, LDA, RHS, IPIV, JPIV, SCALE )
- *
- * .. Scalar Arguments ..
- * INTEGER LDA, N
- * REAL SCALE
- * ..
- * .. Array Arguments ..
- * INTEGER IPIV( * ), JPIV( * )
- * COMPLEX A( LDA, * ), RHS( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CGESC2 solves a system of linear equations
- *>
- *> A * X = scale* RHS
- *>
- *> with a general N-by-N matrix A using the LU factorization with
- *> complete pivoting computed by CGETC2.
- *>
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the matrix A.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is COMPLEX array, dimension (LDA, N)
- *> On entry, the LU part of the factorization of the n-by-n
- *> matrix A computed by CGETC2: A = P * L * U * Q
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1, N).
- *> \endverbatim
- *>
- *> \param[in,out] RHS
- *> \verbatim
- *> RHS is COMPLEX array, dimension N.
- *> On entry, the right hand side vector b.
- *> On exit, the solution vector X.
- *> \endverbatim
- *>
- *> \param[in] IPIV
- *> \verbatim
- *> IPIV is INTEGER array, dimension (N).
- *> The pivot indices; for 1 <= i <= N, row i of the
- *> matrix has been interchanged with row IPIV(i).
- *> \endverbatim
- *>
- *> \param[in] JPIV
- *> \verbatim
- *> JPIV is INTEGER array, dimension (N).
- *> The pivot indices; for 1 <= j <= N, column j of the
- *> matrix has been interchanged with column JPIV(j).
- *> \endverbatim
- *>
- *> \param[out] SCALE
- *> \verbatim
- *> SCALE is REAL
- *> On exit, SCALE contains the scale factor. SCALE is chosen
- *> 0 <= SCALE <= 1 to prevent overflow in the solution.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complexGEauxiliary
- *
- *> \par Contributors:
- * ==================
- *>
- *> Bo Kagstrom and Peter Poromaa, Department of Computing Science,
- *> Umea University, S-901 87 Umea, Sweden.
- *
- * =====================================================================
- SUBROUTINE CGESC2( N, A, LDA, RHS, IPIV, JPIV, SCALE )
- *
- * -- LAPACK auxiliary routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER LDA, N
- REAL SCALE
- * ..
- * .. Array Arguments ..
- INTEGER IPIV( * ), JPIV( * )
- COMPLEX A( LDA, * ), RHS( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ZERO, ONE, TWO
- PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0, TWO = 2.0E+0 )
- * ..
- * .. Local Scalars ..
- INTEGER I, J
- REAL BIGNUM, EPS, SMLNUM
- COMPLEX TEMP
- * ..
- * .. External Subroutines ..
- EXTERNAL CLASWP, CSCAL, SLABAD
- * ..
- * .. External Functions ..
- INTEGER ICAMAX
- REAL SLAMCH
- EXTERNAL ICAMAX, SLAMCH
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, CMPLX, REAL
- * ..
- * .. Executable Statements ..
- *
- * Set constant to control overflow
- *
- EPS = SLAMCH( 'P' )
- SMLNUM = SLAMCH( 'S' ) / EPS
- BIGNUM = ONE / SMLNUM
- CALL SLABAD( SMLNUM, BIGNUM )
- *
- * Apply permutations IPIV to RHS
- *
- CALL CLASWP( 1, RHS, LDA, 1, N-1, IPIV, 1 )
- *
- * Solve for L part
- *
- DO 20 I = 1, N - 1
- DO 10 J = I + 1, N
- RHS( J ) = RHS( J ) - A( J, I )*RHS( I )
- 10 CONTINUE
- 20 CONTINUE
- *
- * Solve for U part
- *
- SCALE = ONE
- *
- * Check for scaling
- *
- I = ICAMAX( N, RHS, 1 )
- IF( TWO*SMLNUM*ABS( RHS( I ) ).GT.ABS( A( N, N ) ) ) THEN
- TEMP = CMPLX( ONE / TWO, ZERO ) / ABS( RHS( I ) )
- CALL CSCAL( N, TEMP, RHS( 1 ), 1 )
- SCALE = SCALE*REAL( TEMP )
- END IF
- DO 40 I = N, 1, -1
- TEMP = CMPLX( ONE, ZERO ) / A( I, I )
- RHS( I ) = RHS( I )*TEMP
- DO 30 J = I + 1, N
- RHS( I ) = RHS( I ) - RHS( J )*( A( I, J )*TEMP )
- 30 CONTINUE
- 40 CONTINUE
- *
- * Apply permutations JPIV to the solution (RHS)
- *
- CALL CLASWP( 1, RHS, LDA, 1, N-1, JPIV, -1 )
- RETURN
- *
- * End of CGESC2
- *
- END
|