|
- *> \brief \b CGEMQRT
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download CGEMQRT + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgemqrt.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgemqrt.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgemqrt.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CGEMQRT( SIDE, TRANS, M, N, K, NB, V, LDV, T, LDT,
- * C, LDC, WORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER SIDE, TRANS
- * INTEGER INFO, K, LDV, LDC, M, N, NB, LDT
- * ..
- * .. Array Arguments ..
- * COMPLEX V( LDV, * ), C( LDC, * ), T( LDT, * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CGEMQRT overwrites the general complex M-by-N matrix C with
- *>
- *> SIDE = 'L' SIDE = 'R'
- *> TRANS = 'N': Q C C Q
- *> TRANS = 'C': Q**H C C Q**H
- *>
- *> where Q is a complex orthogonal matrix defined as the product of K
- *> elementary reflectors:
- *>
- *> Q = H(1) H(2) . . . H(K) = I - V T V**H
- *>
- *> generated using the compact WY representation as returned by CGEQRT.
- *>
- *> Q is of order M if SIDE = 'L' and of order N if SIDE = 'R'.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] SIDE
- *> \verbatim
- *> SIDE is CHARACTER*1
- *> = 'L': apply Q or Q**H from the Left;
- *> = 'R': apply Q or Q**H from the Right.
- *> \endverbatim
- *>
- *> \param[in] TRANS
- *> \verbatim
- *> TRANS is CHARACTER*1
- *> = 'N': No transpose, apply Q;
- *> = 'C': Conjugate transpose, apply Q**H.
- *> \endverbatim
- *>
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the matrix C. M >= 0.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the matrix C. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] K
- *> \verbatim
- *> K is INTEGER
- *> The number of elementary reflectors whose product defines
- *> the matrix Q.
- *> If SIDE = 'L', M >= K >= 0;
- *> if SIDE = 'R', N >= K >= 0.
- *> \endverbatim
- *>
- *> \param[in] NB
- *> \verbatim
- *> NB is INTEGER
- *> The block size used for the storage of T. K >= NB >= 1.
- *> This must be the same value of NB used to generate T
- *> in CGEQRT.
- *> \endverbatim
- *>
- *> \param[in] V
- *> \verbatim
- *> V is COMPLEX array, dimension (LDV,K)
- *> The i-th column must contain the vector which defines the
- *> elementary reflector H(i), for i = 1,2,...,k, as returned by
- *> CGEQRT in the first K columns of its array argument A.
- *> \endverbatim
- *>
- *> \param[in] LDV
- *> \verbatim
- *> LDV is INTEGER
- *> The leading dimension of the array V.
- *> If SIDE = 'L', LDA >= max(1,M);
- *> if SIDE = 'R', LDA >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in] T
- *> \verbatim
- *> T is COMPLEX array, dimension (LDT,K)
- *> The upper triangular factors of the block reflectors
- *> as returned by CGEQRT, stored as a NB-by-N matrix.
- *> \endverbatim
- *>
- *> \param[in] LDT
- *> \verbatim
- *> LDT is INTEGER
- *> The leading dimension of the array T. LDT >= NB.
- *> \endverbatim
- *>
- *> \param[in,out] C
- *> \verbatim
- *> C is COMPLEX array, dimension (LDC,N)
- *> On entry, the M-by-N matrix C.
- *> On exit, C is overwritten by Q C, Q**H C, C Q**H or C Q.
- *> \endverbatim
- *>
- *> \param[in] LDC
- *> \verbatim
- *> LDC is INTEGER
- *> The leading dimension of the array C. LDC >= max(1,M).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX array. The dimension of WORK is
- *> N*NB if SIDE = 'L', or M*NB if SIDE = 'R'.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complexGEcomputational
- *
- * =====================================================================
- SUBROUTINE CGEMQRT( SIDE, TRANS, M, N, K, NB, V, LDV, T, LDT,
- $ C, LDC, WORK, INFO )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER SIDE, TRANS
- INTEGER INFO, K, LDV, LDC, M, N, NB, LDT
- * ..
- * .. Array Arguments ..
- COMPLEX V( LDV, * ), C( LDC, * ), T( LDT, * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * ..
- * .. Local Scalars ..
- LOGICAL LEFT, RIGHT, TRAN, NOTRAN
- INTEGER I, IB, LDWORK, KF, Q
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. External Subroutines ..
- EXTERNAL XERBLA, CLARFB
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, MIN
- * ..
- * .. Executable Statements ..
- *
- * .. Test the input arguments ..
- *
- INFO = 0
- LEFT = LSAME( SIDE, 'L' )
- RIGHT = LSAME( SIDE, 'R' )
- TRAN = LSAME( TRANS, 'C' )
- NOTRAN = LSAME( TRANS, 'N' )
- *
- IF( LEFT ) THEN
- LDWORK = MAX( 1, N )
- Q = M
- ELSE IF ( RIGHT ) THEN
- LDWORK = MAX( 1, M )
- Q = N
- END IF
- IF( .NOT.LEFT .AND. .NOT.RIGHT ) THEN
- INFO = -1
- ELSE IF( .NOT.TRAN .AND. .NOT.NOTRAN ) THEN
- INFO = -2
- ELSE IF( M.LT.0 ) THEN
- INFO = -3
- ELSE IF( N.LT.0 ) THEN
- INFO = -4
- ELSE IF( K.LT.0 .OR. K.GT.Q ) THEN
- INFO = -5
- ELSE IF( NB.LT.1 .OR. (NB.GT.K .AND. K.GT.0)) THEN
- INFO = -6
- ELSE IF( LDV.LT.MAX( 1, Q ) ) THEN
- INFO = -8
- ELSE IF( LDT.LT.NB ) THEN
- INFO = -10
- ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
- INFO = -12
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'CGEMQRT', -INFO )
- RETURN
- END IF
- *
- * .. Quick return if possible ..
- *
- IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 ) RETURN
- *
- IF( LEFT .AND. TRAN ) THEN
- *
- DO I = 1, K, NB
- IB = MIN( NB, K-I+1 )
- CALL CLARFB( 'L', 'C', 'F', 'C', M-I+1, N, IB,
- $ V( I, I ), LDV, T( 1, I ), LDT,
- $ C( I, 1 ), LDC, WORK, LDWORK )
- END DO
- *
- ELSE IF( RIGHT .AND. NOTRAN ) THEN
- *
- DO I = 1, K, NB
- IB = MIN( NB, K-I+1 )
- CALL CLARFB( 'R', 'N', 'F', 'C', M, N-I+1, IB,
- $ V( I, I ), LDV, T( 1, I ), LDT,
- $ C( 1, I ), LDC, WORK, LDWORK )
- END DO
- *
- ELSE IF( LEFT .AND. NOTRAN ) THEN
- *
- KF = ((K-1)/NB)*NB+1
- DO I = KF, 1, -NB
- IB = MIN( NB, K-I+1 )
- CALL CLARFB( 'L', 'N', 'F', 'C', M-I+1, N, IB,
- $ V( I, I ), LDV, T( 1, I ), LDT,
- $ C( I, 1 ), LDC, WORK, LDWORK )
- END DO
- *
- ELSE IF( RIGHT .AND. TRAN ) THEN
- *
- KF = ((K-1)/NB)*NB+1
- DO I = KF, 1, -NB
- IB = MIN( NB, K-I+1 )
- CALL CLARFB( 'R', 'C', 'F', 'C', M, N-I+1, IB,
- $ V( I, I ), LDV, T( 1, I ), LDT,
- $ C( 1, I ), LDC, WORK, LDWORK )
- END DO
- *
- END IF
- *
- RETURN
- *
- * End of CGEMQRT
- *
- END
|