|
- *> \brief <b> CGELST solves overdetermined or underdetermined systems for GE matrices using QR or LQ factorization with compact WY representation of Q.</b>
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download CGELST + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgelst.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgelst.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgelst.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CGELST( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK,
- * INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER TRANS
- * INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS
- * ..
- * .. Array Arguments ..
- * COMPLEX A( LDA, * ), B( LDB, * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CGELST solves overdetermined or underdetermined real linear systems
- *> involving an M-by-N matrix A, or its conjugate-transpose, using a QR
- *> or LQ factorization of A with compact WY representation of Q.
- *> It is assumed that A has full rank.
- *>
- *> The following options are provided:
- *>
- *> 1. If TRANS = 'N' and m >= n: find the least squares solution of
- *> an overdetermined system, i.e., solve the least squares problem
- *> minimize || B - A*X ||.
- *>
- *> 2. If TRANS = 'N' and m < n: find the minimum norm solution of
- *> an underdetermined system A * X = B.
- *>
- *> 3. If TRANS = 'C' and m >= n: find the minimum norm solution of
- *> an underdetermined system A**T * X = B.
- *>
- *> 4. If TRANS = 'C' and m < n: find the least squares solution of
- *> an overdetermined system, i.e., solve the least squares problem
- *> minimize || B - A**T * X ||.
- *>
- *> Several right hand side vectors b and solution vectors x can be
- *> handled in a single call; they are stored as the columns of the
- *> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
- *> matrix X.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] TRANS
- *> \verbatim
- *> TRANS is CHARACTER*1
- *> = 'N': the linear system involves A;
- *> = 'C': the linear system involves A**H.
- *> \endverbatim
- *>
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the matrix A. M >= 0.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] NRHS
- *> \verbatim
- *> NRHS is INTEGER
- *> The number of right hand sides, i.e., the number of
- *> columns of the matrices B and X. NRHS >=0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is COMPLEX array, dimension (LDA,N)
- *> On entry, the M-by-N matrix A.
- *> On exit,
- *> if M >= N, A is overwritten by details of its QR
- *> factorization as returned by CGEQRT;
- *> if M < N, A is overwritten by details of its LQ
- *> factorization as returned by CGELQT.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,M).
- *> \endverbatim
- *>
- *> \param[in,out] B
- *> \verbatim
- *> B is COMPLEX array, dimension (LDB,NRHS)
- *> On entry, the matrix B of right hand side vectors, stored
- *> columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS
- *> if TRANS = 'C'.
- *> On exit, if INFO = 0, B is overwritten by the solution
- *> vectors, stored columnwise:
- *> if TRANS = 'N' and m >= n, rows 1 to n of B contain the least
- *> squares solution vectors; the residual sum of squares for the
- *> solution in each column is given by the sum of squares of
- *> modulus of elements N+1 to M in that column;
- *> if TRANS = 'N' and m < n, rows 1 to N of B contain the
- *> minimum norm solution vectors;
- *> if TRANS = 'C' and m >= n, rows 1 to M of B contain the
- *> minimum norm solution vectors;
- *> if TRANS = 'C' and m < n, rows 1 to M of B contain the
- *> least squares solution vectors; the residual sum of squares
- *> for the solution in each column is given by the sum of
- *> squares of the modulus of elements M+1 to N in that column.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the array B. LDB >= MAX(1,M,N).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX array, dimension (MAX(1,LWORK))
- *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The dimension of the array WORK.
- *> LWORK >= max( 1, MN + max( MN, NRHS ) ).
- *> For optimal performance,
- *> LWORK >= max( 1, (MN + max( MN, NRHS ))*NB ).
- *> where MN = min(M,N) and NB is the optimum block size.
- *>
- *> If LWORK = -1, then a workspace query is assumed; the routine
- *> only calculates the optimal size of the WORK array, returns
- *> this value as the first entry of the WORK array, and no error
- *> message related to LWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> > 0: if INFO = i, the i-th diagonal element of the
- *> triangular factor of A is zero, so that A does not have
- *> full rank; the least squares solution could not be
- *> computed.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complexGEsolve
- *
- *> \par Contributors:
- * ==================
- *>
- *> \verbatim
- *>
- *> November 2022, Igor Kozachenko,
- *> Computer Science Division,
- *> University of California, Berkeley
- *> \endverbatim
- *
- * =====================================================================
- SUBROUTINE CGELST( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK,
- $ INFO )
- *
- * -- LAPACK driver routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER TRANS
- INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS
- * ..
- * .. Array Arguments ..
- COMPLEX A( LDA, * ), B( LDB, * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ZERO, ONE
- PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
- COMPLEX CZERO
- PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ) )
- * ..
- * .. Local Scalars ..
- LOGICAL LQUERY, TPSD
- INTEGER BROW, I, IASCL, IBSCL, J, LWOPT, MN, MNNRHS,
- $ NB, NBMIN, SCLLEN
- REAL ANRM, BIGNUM, BNRM, SMLNUM
- * ..
- * .. Local Arrays ..
- REAL RWORK( 1 )
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- INTEGER ILAENV
- REAL SLAMCH, CLANGE
- EXTERNAL LSAME, ILAENV, SLAMCH, CLANGE
- * ..
- * .. External Subroutines ..
- EXTERNAL CGELQT, CGEQRT, CGEMLQT, CGEMQRT, SLABAD,
- $ CLASCL, CLASET, CTRTRS, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC REAL, MAX, MIN
- * ..
- * .. Executable Statements ..
- *
- * Test the input arguments.
- *
- INFO = 0
- MN = MIN( M, N )
- LQUERY = ( LWORK.EQ.-1 )
- IF( .NOT.( LSAME( TRANS, 'N' ) .OR. LSAME( TRANS, 'C' ) ) ) THEN
- INFO = -1
- ELSE IF( M.LT.0 ) THEN
- INFO = -2
- ELSE IF( N.LT.0 ) THEN
- INFO = -3
- ELSE IF( NRHS.LT.0 ) THEN
- INFO = -4
- ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
- INFO = -6
- ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
- INFO = -8
- ELSE IF( LWORK.LT.MAX( 1, MN+MAX( MN, NRHS ) ) .AND. .NOT.LQUERY )
- $ THEN
- INFO = -10
- END IF
- *
- * Figure out optimal block size and optimal workspace size
- *
- IF( INFO.EQ.0 .OR. INFO.EQ.-10 ) THEN
- *
- TPSD = .TRUE.
- IF( LSAME( TRANS, 'N' ) )
- $ TPSD = .FALSE.
- *
- NB = ILAENV( 1, 'CGELST', ' ', M, N, -1, -1 )
- *
- MNNRHS = MAX( MN, NRHS )
- LWOPT = MAX( 1, (MN+MNNRHS)*NB )
- WORK( 1 ) = REAL( LWOPT )
- *
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'CGELST ', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( MIN( M, N, NRHS ).EQ.0 ) THEN
- CALL CLASET( 'Full', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
- WORK( 1 ) = REAL( LWOPT )
- RETURN
- END IF
- *
- * *GEQRT and *GELQT routines cannot accept NB larger than min(M,N)
- *
- IF( NB.GT.MN ) NB = MN
- *
- * Determine the block size from the supplied LWORK
- * ( at this stage we know that LWORK >= (minimum required workspace,
- * but it may be less than optimal)
- *
- NB = MIN( NB, LWORK/( MN + MNNRHS ) )
- *
- * The minimum value of NB, when blocked code is used
- *
- NBMIN = MAX( 2, ILAENV( 2, 'CGELST', ' ', M, N, -1, -1 ) )
- *
- IF( NB.LT.NBMIN ) THEN
- NB = 1
- END IF
- *
- * Get machine parameters
- *
- SMLNUM = SLAMCH( 'S' ) / SLAMCH( 'P' )
- BIGNUM = ONE / SMLNUM
- CALL SLABAD( SMLNUM, BIGNUM )
- *
- * Scale A, B if max element outside range [SMLNUM,BIGNUM]
- *
- ANRM = CLANGE( 'M', M, N, A, LDA, RWORK )
- IASCL = 0
- IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
- *
- * Scale matrix norm up to SMLNUM
- *
- CALL CLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
- IASCL = 1
- ELSE IF( ANRM.GT.BIGNUM ) THEN
- *
- * Scale matrix norm down to BIGNUM
- *
- CALL CLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
- IASCL = 2
- ELSE IF( ANRM.EQ.ZERO ) THEN
- *
- * Matrix all zero. Return zero solution.
- *
- CALL CLASET( 'Full', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
- WORK( 1 ) = REAL( LWOPT )
- RETURN
- END IF
- *
- BROW = M
- IF( TPSD )
- $ BROW = N
- BNRM = CLANGE( 'M', BROW, NRHS, B, LDB, RWORK )
- IBSCL = 0
- IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
- *
- * Scale matrix norm up to SMLNUM
- *
- CALL CLASCL( 'G', 0, 0, BNRM, SMLNUM, BROW, NRHS, B, LDB,
- $ INFO )
- IBSCL = 1
- ELSE IF( BNRM.GT.BIGNUM ) THEN
- *
- * Scale matrix norm down to BIGNUM
- *
- CALL CLASCL( 'G', 0, 0, BNRM, BIGNUM, BROW, NRHS, B, LDB,
- $ INFO )
- IBSCL = 2
- END IF
- *
- IF( M.GE.N ) THEN
- *
- * M > N:
- * Compute the blocked QR factorization of A,
- * using the compact WY representation of Q,
- * workspace at least N, optimally N*NB.
- *
- CALL CGEQRT( M, N, NB, A, LDA, WORK( 1 ), NB,
- $ WORK( MN*NB+1 ), INFO )
- *
- IF( .NOT.TPSD ) THEN
- *
- * M > N, A is not transposed:
- * Overdetermined system of equations,
- * least-squares problem, min || A * X - B ||.
- *
- * Compute B(1:M,1:NRHS) := Q**T * B(1:M,1:NRHS),
- * using the compact WY representation of Q,
- * workspace at least NRHS, optimally NRHS*NB.
- *
- CALL CGEMQRT( 'Left', 'Conjugate transpose', M, NRHS, N, NB,
- $ A, LDA, WORK( 1 ), NB, B, LDB,
- $ WORK( MN*NB+1 ), INFO )
- *
- * Compute B(1:N,1:NRHS) := inv(R) * B(1:N,1:NRHS)
- *
- CALL CTRTRS( 'Upper', 'No transpose', 'Non-unit', N, NRHS,
- $ A, LDA, B, LDB, INFO )
- *
- IF( INFO.GT.0 ) THEN
- RETURN
- END IF
- *
- SCLLEN = N
- *
- ELSE
- *
- * M > N, A is transposed:
- * Underdetermined system of equations,
- * minimum norm solution of A**T * X = B.
- *
- * Compute B := inv(R**T) * B in two row blocks of B.
- *
- * Block 1: B(1:N,1:NRHS) := inv(R**T) * B(1:N,1:NRHS)
- *
- CALL CTRTRS( 'Upper', 'Conjugate transpose', 'Non-unit',
- $ N, NRHS, A, LDA, B, LDB, INFO )
- *
- IF( INFO.GT.0 ) THEN
- RETURN
- END IF
- *
- * Block 2: Zero out all rows below the N-th row in B:
- * B(N+1:M,1:NRHS) = ZERO
- *
- DO J = 1, NRHS
- DO I = N + 1, M
- B( I, J ) = ZERO
- END DO
- END DO
- *
- * Compute B(1:M,1:NRHS) := Q(1:N,:) * B(1:N,1:NRHS),
- * using the compact WY representation of Q,
- * workspace at least NRHS, optimally NRHS*NB.
- *
- CALL CGEMQRT( 'Left', 'No transpose', M, NRHS, N, NB,
- $ A, LDA, WORK( 1 ), NB, B, LDB,
- $ WORK( MN*NB+1 ), INFO )
- *
- SCLLEN = M
- *
- END IF
- *
- ELSE
- *
- * M < N:
- * Compute the blocked LQ factorization of A,
- * using the compact WY representation of Q,
- * workspace at least M, optimally M*NB.
- *
- CALL CGELQT( M, N, NB, A, LDA, WORK( 1 ), NB,
- $ WORK( MN*NB+1 ), INFO )
- *
- IF( .NOT.TPSD ) THEN
- *
- * M < N, A is not transposed:
- * Underdetermined system of equations,
- * minimum norm solution of A * X = B.
- *
- * Compute B := inv(L) * B in two row blocks of B.
- *
- * Block 1: B(1:M,1:NRHS) := inv(L) * B(1:M,1:NRHS)
- *
- CALL CTRTRS( 'Lower', 'No transpose', 'Non-unit', M, NRHS,
- $ A, LDA, B, LDB, INFO )
- *
- IF( INFO.GT.0 ) THEN
- RETURN
- END IF
- *
- * Block 2: Zero out all rows below the M-th row in B:
- * B(M+1:N,1:NRHS) = ZERO
- *
- DO J = 1, NRHS
- DO I = M + 1, N
- B( I, J ) = ZERO
- END DO
- END DO
- *
- * Compute B(1:N,1:NRHS) := Q(1:N,:)**T * B(1:M,1:NRHS),
- * using the compact WY representation of Q,
- * workspace at least NRHS, optimally NRHS*NB.
- *
- CALL CGEMLQT( 'Left', 'Conjugate transpose', N, NRHS, M, NB,
- $ A, LDA, WORK( 1 ), NB, B, LDB,
- $ WORK( MN*NB+1 ), INFO )
- *
- SCLLEN = N
- *
- ELSE
- *
- * M < N, A is transposed:
- * Overdetermined system of equations,
- * least-squares problem, min || A**T * X - B ||.
- *
- * Compute B(1:N,1:NRHS) := Q * B(1:N,1:NRHS),
- * using the compact WY representation of Q,
- * workspace at least NRHS, optimally NRHS*NB.
- *
- CALL CGEMLQT( 'Left', 'No transpose', N, NRHS, M, NB,
- $ A, LDA, WORK( 1 ), NB, B, LDB,
- $ WORK( MN*NB+1), INFO )
- *
- * Compute B(1:M,1:NRHS) := inv(L**T) * B(1:M,1:NRHS)
- *
- CALL CTRTRS( 'Lower', 'Conjugate transpose', 'Non-unit',
- $ M, NRHS, A, LDA, B, LDB, INFO )
- *
- IF( INFO.GT.0 ) THEN
- RETURN
- END IF
- *
- SCLLEN = M
- *
- END IF
- *
- END IF
- *
- * Undo scaling
- *
- IF( IASCL.EQ.1 ) THEN
- CALL CLASCL( 'G', 0, 0, ANRM, SMLNUM, SCLLEN, NRHS, B, LDB,
- $ INFO )
- ELSE IF( IASCL.EQ.2 ) THEN
- CALL CLASCL( 'G', 0, 0, ANRM, BIGNUM, SCLLEN, NRHS, B, LDB,
- $ INFO )
- END IF
- IF( IBSCL.EQ.1 ) THEN
- CALL CLASCL( 'G', 0, 0, SMLNUM, BNRM, SCLLEN, NRHS, B, LDB,
- $ INFO )
- ELSE IF( IBSCL.EQ.2 ) THEN
- CALL CLASCL( 'G', 0, 0, BIGNUM, BNRM, SCLLEN, NRHS, B, LDB,
- $ INFO )
- END IF
- *
- WORK( 1 ) = REAL( LWOPT )
- *
- RETURN
- *
- * End of CGELST
- *
- END
|