|
- *> \brief \b CGELQF
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download CGELQF + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgelqf.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgelqf.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgelqf.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CGELQF( M, N, A, LDA, TAU, WORK, LWORK, INFO )
- *
- * .. Scalar Arguments ..
- * INTEGER INFO, LDA, LWORK, M, N
- * ..
- * .. Array Arguments ..
- * COMPLEX A( LDA, * ), TAU( * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CGELQF computes an LQ factorization of a complex M-by-N matrix A:
- *>
- *> A = ( L 0 ) * Q
- *>
- *> where:
- *>
- *> Q is a N-by-N orthogonal matrix;
- *> L is a lower-triangular M-by-M matrix;
- *> 0 is a M-by-(N-M) zero matrix, if M < N.
- *>
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the matrix A. M >= 0.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is COMPLEX array, dimension (LDA,N)
- *> On entry, the M-by-N matrix A.
- *> On exit, the elements on and below the diagonal of the array
- *> contain the m-by-min(m,n) lower trapezoidal matrix L (L is
- *> lower triangular if m <= n); the elements above the diagonal,
- *> with the array TAU, represent the unitary matrix Q as a
- *> product of elementary reflectors (see Further Details).
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,M).
- *> \endverbatim
- *>
- *> \param[out] TAU
- *> \verbatim
- *> TAU is COMPLEX array, dimension (min(M,N))
- *> The scalar factors of the elementary reflectors (see Further
- *> Details).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX array, dimension (MAX(1,LWORK))
- *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The dimension of the array WORK. LWORK >= max(1,M).
- *> For optimum performance LWORK >= M*NB, where NB is the
- *> optimal blocksize.
- *>
- *> If LWORK = -1, then a workspace query is assumed; the routine
- *> only calculates the optimal size of the WORK array, returns
- *> this value as the first entry of the WORK array, and no error
- *> message related to LWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complexGEcomputational
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> The matrix Q is represented as a product of elementary reflectors
- *>
- *> Q = H(k)**H . . . H(2)**H H(1)**H, where k = min(m,n).
- *>
- *> Each H(i) has the form
- *>
- *> H(i) = I - tau * v * v**H
- *>
- *> where tau is a complex scalar, and v is a complex vector with
- *> v(1:i-1) = 0 and v(i) = 1; conjg(v(i+1:n)) is stored on exit in
- *> A(i,i+1:n), and tau in TAU(i).
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE CGELQF( M, N, A, LDA, TAU, WORK, LWORK, INFO )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER INFO, LDA, LWORK, M, N
- * ..
- * .. Array Arguments ..
- COMPLEX A( LDA, * ), TAU( * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Local Scalars ..
- LOGICAL LQUERY
- INTEGER I, IB, IINFO, IWS, K, LDWORK, LWKOPT, NB,
- $ NBMIN, NX
- * ..
- * .. External Subroutines ..
- EXTERNAL CGELQ2, CLARFB, CLARFT, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, MIN
- * ..
- * .. External Functions ..
- INTEGER ILAENV
- EXTERNAL ILAENV
- * ..
- * .. Executable Statements ..
- *
- * Test the input arguments
- *
- INFO = 0
- NB = ILAENV( 1, 'CGELQF', ' ', M, N, -1, -1 )
- LWKOPT = M*NB
- WORK( 1 ) = LWKOPT
- LQUERY = ( LWORK.EQ.-1 )
- IF( M.LT.0 ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
- INFO = -4
- ELSE IF( LWORK.LT.MAX( 1, M ) .AND. .NOT.LQUERY ) THEN
- INFO = -7
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'CGELQF', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
- *
- * Quick return if possible
- *
- K = MIN( M, N )
- IF( K.EQ.0 ) THEN
- WORK( 1 ) = 1
- RETURN
- END IF
- *
- NBMIN = 2
- NX = 0
- IWS = M
- IF( NB.GT.1 .AND. NB.LT.K ) THEN
- *
- * Determine when to cross over from blocked to unblocked code.
- *
- NX = MAX( 0, ILAENV( 3, 'CGELQF', ' ', M, N, -1, -1 ) )
- IF( NX.LT.K ) THEN
- *
- * Determine if workspace is large enough for blocked code.
- *
- LDWORK = M
- IWS = LDWORK*NB
- IF( LWORK.LT.IWS ) THEN
- *
- * Not enough workspace to use optimal NB: reduce NB and
- * determine the minimum value of NB.
- *
- NB = LWORK / LDWORK
- NBMIN = MAX( 2, ILAENV( 2, 'CGELQF', ' ', M, N, -1,
- $ -1 ) )
- END IF
- END IF
- END IF
- *
- IF( NB.GE.NBMIN .AND. NB.LT.K .AND. NX.LT.K ) THEN
- *
- * Use blocked code initially
- *
- DO 10 I = 1, K - NX, NB
- IB = MIN( K-I+1, NB )
- *
- * Compute the LQ factorization of the current block
- * A(i:i+ib-1,i:n)
- *
- CALL CGELQ2( IB, N-I+1, A( I, I ), LDA, TAU( I ), WORK,
- $ IINFO )
- IF( I+IB.LE.M ) THEN
- *
- * Form the triangular factor of the block reflector
- * H = H(i) H(i+1) . . . H(i+ib-1)
- *
- CALL CLARFT( 'Forward', 'Rowwise', N-I+1, IB, A( I, I ),
- $ LDA, TAU( I ), WORK, LDWORK )
- *
- * Apply H to A(i+ib:m,i:n) from the right
- *
- CALL CLARFB( 'Right', 'No transpose', 'Forward',
- $ 'Rowwise', M-I-IB+1, N-I+1, IB, A( I, I ),
- $ LDA, WORK, LDWORK, A( I+IB, I ), LDA,
- $ WORK( IB+1 ), LDWORK )
- END IF
- 10 CONTINUE
- ELSE
- I = 1
- END IF
- *
- * Use unblocked code to factor the last or only block.
- *
- IF( I.LE.K )
- $ CALL CGELQ2( M-I+1, N-I+1, A( I, I ), LDA, TAU( I ), WORK,
- $ IINFO )
- *
- WORK( 1 ) = IWS
- RETURN
- *
- * End of CGELQF
- *
- END
|