|
- *> \brief <b> CGBSV computes the solution to system of linear equations A * X = B for GB matrices</b> (simple driver)
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download CGBSV + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgbsv.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgbsv.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgbsv.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CGBSV( N, KL, KU, NRHS, AB, LDAB, IPIV, B, LDB, INFO )
- *
- * .. Scalar Arguments ..
- * INTEGER INFO, KL, KU, LDAB, LDB, N, NRHS
- * ..
- * .. Array Arguments ..
- * INTEGER IPIV( * )
- * COMPLEX AB( LDAB, * ), B( LDB, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CGBSV computes the solution to a complex system of linear equations
- *> A * X = B, where A is a band matrix of order N with KL subdiagonals
- *> and KU superdiagonals, and X and B are N-by-NRHS matrices.
- *>
- *> The LU decomposition with partial pivoting and row interchanges is
- *> used to factor A as A = L * U, where L is a product of permutation
- *> and unit lower triangular matrices with KL subdiagonals, and U is
- *> upper triangular with KL+KU superdiagonals. The factored form of A
- *> is then used to solve the system of equations A * X = B.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of linear equations, i.e., the order of the
- *> matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] KL
- *> \verbatim
- *> KL is INTEGER
- *> The number of subdiagonals within the band of A. KL >= 0.
- *> \endverbatim
- *>
- *> \param[in] KU
- *> \verbatim
- *> KU is INTEGER
- *> The number of superdiagonals within the band of A. KU >= 0.
- *> \endverbatim
- *>
- *> \param[in] NRHS
- *> \verbatim
- *> NRHS is INTEGER
- *> The number of right hand sides, i.e., the number of columns
- *> of the matrix B. NRHS >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] AB
- *> \verbatim
- *> AB is COMPLEX array, dimension (LDAB,N)
- *> On entry, the matrix A in band storage, in rows KL+1 to
- *> 2*KL+KU+1; rows 1 to KL of the array need not be set.
- *> The j-th column of A is stored in the j-th column of the
- *> array AB as follows:
- *> AB(KL+KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+KL)
- *> On exit, details of the factorization: U is stored as an
- *> upper triangular band matrix with KL+KU superdiagonals in
- *> rows 1 to KL+KU+1, and the multipliers used during the
- *> factorization are stored in rows KL+KU+2 to 2*KL+KU+1.
- *> See below for further details.
- *> \endverbatim
- *>
- *> \param[in] LDAB
- *> \verbatim
- *> LDAB is INTEGER
- *> The leading dimension of the array AB. LDAB >= 2*KL+KU+1.
- *> \endverbatim
- *>
- *> \param[out] IPIV
- *> \verbatim
- *> IPIV is INTEGER array, dimension (N)
- *> The pivot indices that define the permutation matrix P;
- *> row i of the matrix was interchanged with row IPIV(i).
- *> \endverbatim
- *>
- *> \param[in,out] B
- *> \verbatim
- *> B is COMPLEX array, dimension (LDB,NRHS)
- *> On entry, the N-by-NRHS right hand side matrix B.
- *> On exit, if INFO = 0, the N-by-NRHS solution matrix X.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the array B. LDB >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> > 0: if INFO = i, U(i,i) is exactly zero. The factorization
- *> has been completed, but the factor U is exactly
- *> singular, and the solution has not been computed.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complexGBsolve
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> The band storage scheme is illustrated by the following example, when
- *> M = N = 6, KL = 2, KU = 1:
- *>
- *> On entry: On exit:
- *>
- *> * * * + + + * * * u14 u25 u36
- *> * * + + + + * * u13 u24 u35 u46
- *> * a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56
- *> a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66
- *> a21 a32 a43 a54 a65 * m21 m32 m43 m54 m65 *
- *> a31 a42 a53 a64 * * m31 m42 m53 m64 * *
- *>
- *> Array elements marked * are not used by the routine; elements marked
- *> + need not be set on entry, but are required by the routine to store
- *> elements of U because of fill-in resulting from the row interchanges.
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE CGBSV( N, KL, KU, NRHS, AB, LDAB, IPIV, B, LDB, INFO )
- *
- * -- LAPACK driver routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER INFO, KL, KU, LDAB, LDB, N, NRHS
- * ..
- * .. Array Arguments ..
- INTEGER IPIV( * )
- COMPLEX AB( LDAB, * ), B( LDB, * )
- * ..
- *
- * =====================================================================
- *
- * .. External Subroutines ..
- EXTERNAL CGBTRF, CGBTRS, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- IF( N.LT.0 ) THEN
- INFO = -1
- ELSE IF( KL.LT.0 ) THEN
- INFO = -2
- ELSE IF( KU.LT.0 ) THEN
- INFO = -3
- ELSE IF( NRHS.LT.0 ) THEN
- INFO = -4
- ELSE IF( LDAB.LT.2*KL+KU+1 ) THEN
- INFO = -6
- ELSE IF( LDB.LT.MAX( N, 1 ) ) THEN
- INFO = -9
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'CGBSV ', -INFO )
- RETURN
- END IF
- *
- * Compute the LU factorization of the band matrix A.
- *
- CALL CGBTRF( N, N, KL, KU, AB, LDAB, IPIV, INFO )
- IF( INFO.EQ.0 ) THEN
- *
- * Solve the system A*X = B, overwriting B with X.
- *
- CALL CGBTRS( 'No transpose', N, KL, KU, NRHS, AB, LDAB, IPIV,
- $ B, LDB, INFO )
- END IF
- RETURN
- *
- * End of CGBSV
- *
- END
|