|
- SUBROUTINE ZGETRFF( M, N, A, LDA, IPIV, INFO )
- *
- * -- LAPACK routine (version 3.0) --
- * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- * Courant Institute, Argonne National Lab, and Rice University
- * September 30, 1994
- *
- * .. Scalar Arguments ..
- INTEGER INFO, LDA, M, N
- * ..
- * .. Array Arguments ..
- INTEGER IPIV( * )
- COMPLEX*16 A( LDA, * )
- * ..
- *
- * Purpose
- * =======
- *
- * ZGETRF computes an LU factorization of a general M-by-N matrix A
- * using partial pivoting with row interchanges.
- *
- * The factorization has the form
- * A = P * L * U
- * where P is a permutation matrix, L is lower triangular with unit
- * diagonal elements (lower trapezoidal if m > n), and U is upper
- * triangular (upper trapezoidal if m < n).
- *
- * This is the right-looking Level 3 BLAS version of the algorithm.
- *
- * Arguments
- * =========
- *
- * M (input) INTEGER
- * The number of rows of the matrix A. M >= 0.
- *
- * N (input) INTEGER
- * The number of columns of the matrix A. N >= 0.
- *
- * A (input/output) COMPLEX*16 array, dimension (LDA,N)
- * On entry, the M-by-N matrix to be factored.
- * On exit, the factors L and U from the factorization
- * A = P*L*U; the unit diagonal elements of L are not stored.
- *
- * LDA (input) INTEGER
- * The leading dimension of the array A. LDA >= max(1,M).
- *
- * IPIV (output) INTEGER array, dimension (min(M,N))
- * The pivot indices; for 1 <= i <= min(M,N), row i of the
- * matrix was interchanged with row IPIV(i).
- *
- * INFO (output) INTEGER
- * = 0: successful exit
- * < 0: if INFO = -i, the i-th argument had an illegal value
- * > 0: if INFO = i, U(i,i) is exactly zero. The factorization
- * has been completed, but the factor U is exactly
- * singular, and division by zero will occur if it is used
- * to solve a system of equations.
- *
- * =====================================================================
- *
- * .. Parameters ..
- COMPLEX*16 ONE
- PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ) )
- * ..
- * .. Local Scalars ..
- INTEGER I, IINFO, J, JB, NB
- * ..
- * .. External Subroutines ..
- EXTERNAL XERBLA, ZGEMM, ZGETF2, ZLASWP, ZTRSM
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, MIN
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- IF( M.LT.0 ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
- INFO = -4
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'ZGETRF', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( M.EQ.0 .OR. N.EQ.0 )
- $ RETURN
- *
- * Determine the block size for this environment.
- *
- NB = 64
- IF( NB.LE.1 .OR. NB.GE.MIN( M, N ) ) THEN
- *
- * Use unblocked code.
- *
- CALL ZGETF2( M, N, A, LDA, IPIV, INFO )
- ELSE
- *
- * Use blocked code.
- *
- DO 20 J = 1, MIN( M, N ), NB
- JB = MIN( MIN( M, N )-J+1, NB )
- *
- * Factor diagonal and subdiagonal blocks and test for exact
- * singularity.
- *
- CALL ZGETF2( M-J+1, JB, A( J, J ), LDA, IPIV( J ), IINFO )
- *
- * Adjust INFO and the pivot indices.
- *
- IF( INFO.EQ.0 .AND. IINFO.GT.0 )
- $ INFO = IINFO + J - 1
- DO 10 I = J, MIN( M, J+JB-1 )
- IPIV( I ) = J - 1 + IPIV( I )
- 10 CONTINUE
- *
- * Apply interchanges to columns 1:J-1.
- *
- CALL ZLASWP( J-1, A, LDA, J, J+JB-1, IPIV, 1 )
- *
- IF( J+JB.LE.N ) THEN
- *
- * Apply interchanges to columns J+JB:N.
- *
- CALL ZLASWP( N-J-JB+1, A( 1, J+JB ), LDA, J, J+JB-1,
- $ IPIV, 1 )
- *
- * Compute block row of U.
- *
- CALL ZTRSM( 'Left', 'Lower', 'No transpose', 'Unit', JB,
- $ N-J-JB+1, ONE, A( J, J ), LDA, A( J, J+JB ),
- $ LDA )
- IF( J+JB.LE.M ) THEN
- *
- * Update trailing submatrix.
- *
- CALL ZGEMM( 'No transpose', 'No transpose', M-J-JB+1,
- $ N-J-JB+1, JB, -ONE, A( J+JB, J ), LDA,
- $ A( J, J+JB ), LDA, ONE, A( J+JB, J+JB ),
- $ LDA )
- END IF
- END IF
- 20 CONTINUE
- END IF
- RETURN
- *
- * End of ZGETRF
- *
- END
|