|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef int logical;
- typedef short int shortlogical;
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
- #define F2C_proc_par_types 1
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static complex c_b1 = {0.f,0.f};
- static complex c_b2 = {1.f,0.f};
- static integer c_n1 = -1;
- static integer c__1 = 1;
- static real c_b74 = 0.f;
- static integer c__0 = 0;
- static real c_b87 = 1.f;
- static logical c_false = FALSE_;
-
- /* > \brief <b> CGESVDQ computes the singular value decomposition (SVD) with a QR-Preconditioned QR SVD Method
- for GE matrices</b> */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download CGESVDQ + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgesvdq
- .f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgesvdq
- .f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgesvdq
- .f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE CGESVDQ( JOBA, JOBP, JOBR, JOBU, JOBV, M, N, A, LDA, */
- /* S, U, LDU, V, LDV, NUMRANK, IWORK, LIWORK, */
- /* CWORK, LCWORK, RWORK, LRWORK, INFO ) */
-
- /* IMPLICIT NONE */
- /* CHARACTER JOBA, JOBP, JOBR, JOBU, JOBV */
- /* INTEGER M, N, LDA, LDU, LDV, NUMRANK, LIWORK, LCWORK, LRWORK, */
- /* INFO */
- /* COMPLEX A( LDA, * ), U( LDU, * ), V( LDV, * ), CWORK( * ) */
- /* REAL S( * ), RWORK( * ) */
- /* INTEGER IWORK( * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > CGESVDQ computes the singular value decomposition (SVD) of a complex */
- /* > M-by-N matrix A, where M >= N. The SVD of A is written as */
- /* > [++] [xx] [x0] [xx] */
- /* > A = U * SIGMA * V^*, [++] = [xx] * [ox] * [xx] */
- /* > [++] [xx] */
- /* > where SIGMA is an N-by-N diagonal matrix, U is an M-by-N orthonormal */
- /* > matrix, and V is an N-by-N unitary matrix. The diagonal elements */
- /* > of SIGMA are the singular values of A. The columns of U and V are the */
- /* > left and the right singular vectors of A, respectively. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] JOBA */
- /* > \verbatim */
- /* > JOBA is CHARACTER*1 */
- /* > Specifies the level of accuracy in the computed SVD */
- /* > = 'A' The requested accuracy corresponds to having the backward */
- /* > error bounded by || delta A ||_F <= f(m,n) * EPS * || A ||_F, */
- /* > where EPS = SLAMCH('Epsilon'). This authorises CGESVDQ to */
- /* > truncate the computed triangular factor in a rank revealing */
- /* > QR factorization whenever the truncated part is below the */
- /* > threshold of the order of EPS * ||A||_F. This is aggressive */
- /* > truncation level. */
- /* > = 'M' Similarly as with 'A', but the truncation is more gentle: it */
- /* > is allowed only when there is a drop on the diagonal of the */
- /* > triangular factor in the QR factorization. This is medium */
- /* > truncation level. */
- /* > = 'H' High accuracy requested. No numerical rank determination based */
- /* > on the rank revealing QR factorization is attempted. */
- /* > = 'E' Same as 'H', and in addition the condition number of column */
- /* > scaled A is estimated and returned in RWORK(1). */
- /* > N^(-1/4)*RWORK(1) <= ||pinv(A_scaled)||_2 <= N^(1/4)*RWORK(1) */
- /* > \endverbatim */
- /* > */
- /* > \param[in] JOBP */
- /* > \verbatim */
- /* > JOBP is CHARACTER*1 */
- /* > = 'P' The rows of A are ordered in decreasing order with respect to */
- /* > ||A(i,:)||_\infty. This enhances numerical accuracy at the cost */
- /* > of extra data movement. Recommended for numerical robustness. */
- /* > = 'N' No row pivoting. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] JOBR */
- /* > \verbatim */
- /* > JOBR is CHARACTER*1 */
- /* > = 'T' After the initial pivoted QR factorization, CGESVD is applied to */
- /* > the adjoint R**H of the computed triangular factor R. This involves */
- /* > some extra data movement (matrix transpositions). Useful for */
- /* > experiments, research and development. */
- /* > = 'N' The triangular factor R is given as input to CGESVD. This may be */
- /* > preferred as it involves less data movement. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] JOBU */
- /* > \verbatim */
- /* > JOBU is CHARACTER*1 */
- /* > = 'A' All M left singular vectors are computed and returned in the */
- /* > matrix U. See the description of U. */
- /* > = 'S' or 'U' N = f2cmin(M,N) left singular vectors are computed and returned */
- /* > in the matrix U. See the description of U. */
- /* > = 'R' Numerical rank NUMRANK is determined and only NUMRANK left singular */
- /* > vectors are computed and returned in the matrix U. */
- /* > = 'F' The N left singular vectors are returned in factored form as the */
- /* > product of the Q factor from the initial QR factorization and the */
- /* > N left singular vectors of (R**H , 0)**H. If row pivoting is used, */
- /* > then the necessary information on the row pivoting is stored in */
- /* > IWORK(N+1:N+M-1). */
- /* > = 'N' The left singular vectors are not computed. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] JOBV */
- /* > \verbatim */
- /* > JOBV is CHARACTER*1 */
- /* > = 'A', 'V' All N right singular vectors are computed and returned in */
- /* > the matrix V. */
- /* > = 'R' Numerical rank NUMRANK is determined and only NUMRANK right singular */
- /* > vectors are computed and returned in the matrix V. This option is */
- /* > allowed only if JOBU = 'R' or JOBU = 'N'; otherwise it is illegal. */
- /* > = 'N' The right singular vectors are not computed. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] M */
- /* > \verbatim */
- /* > M is INTEGER */
- /* > The number of rows of the input matrix A. M >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The number of columns of the input matrix A. M >= N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] A */
- /* > \verbatim */
- /* > A is COMPLEX array of dimensions LDA x N */
- /* > On entry, the input matrix A. */
- /* > On exit, if JOBU .NE. 'N' or JOBV .NE. 'N', the lower triangle of A contains */
- /* > the Householder vectors as stored by CGEQP3. If JOBU = 'F', these Householder */
- /* > vectors together with CWORK(1:N) can be used to restore the Q factors from */
- /* > the initial pivoted QR factorization of A. See the description of U. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDA */
- /* > \verbatim */
- /* > LDA is INTEGER. */
- /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] S */
- /* > \verbatim */
- /* > S is REAL array of dimension N. */
- /* > The singular values of A, ordered so that S(i) >= S(i+1). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] U */
- /* > \verbatim */
- /* > U is COMPLEX array, dimension */
- /* > LDU x M if JOBU = 'A'; see the description of LDU. In this case, */
- /* > on exit, U contains the M left singular vectors. */
- /* > LDU x N if JOBU = 'S', 'U', 'R' ; see the description of LDU. In this */
- /* > case, U contains the leading N or the leading NUMRANK left singular vectors. */
- /* > LDU x N if JOBU = 'F' ; see the description of LDU. In this case U */
- /* > contains N x N unitary matrix that can be used to form the left */
- /* > singular vectors. */
- /* > If JOBU = 'N', U is not referenced. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDU */
- /* > \verbatim */
- /* > LDU is INTEGER. */
- /* > The leading dimension of the array U. */
- /* > If JOBU = 'A', 'S', 'U', 'R', LDU >= f2cmax(1,M). */
- /* > If JOBU = 'F', LDU >= f2cmax(1,N). */
- /* > Otherwise, LDU >= 1. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] V */
- /* > \verbatim */
- /* > V is COMPLEX array, dimension */
- /* > LDV x N if JOBV = 'A', 'V', 'R' or if JOBA = 'E' . */
- /* > If JOBV = 'A', or 'V', V contains the N-by-N unitary matrix V**H; */
- /* > If JOBV = 'R', V contains the first NUMRANK rows of V**H (the right */
- /* > singular vectors, stored rowwise, of the NUMRANK largest singular values). */
- /* > If JOBV = 'N' and JOBA = 'E', V is used as a workspace. */
- /* > If JOBV = 'N', and JOBA.NE.'E', V is not referenced. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDV */
- /* > \verbatim */
- /* > LDV is INTEGER */
- /* > The leading dimension of the array V. */
- /* > If JOBV = 'A', 'V', 'R', or JOBA = 'E', LDV >= f2cmax(1,N). */
- /* > Otherwise, LDV >= 1. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] NUMRANK */
- /* > \verbatim */
- /* > NUMRANK is INTEGER */
- /* > NUMRANK is the numerical rank first determined after the rank */
- /* > revealing QR factorization, following the strategy specified by the */
- /* > value of JOBA. If JOBV = 'R' and JOBU = 'R', only NUMRANK */
- /* > leading singular values and vectors are then requested in the call */
- /* > of CGESVD. The final value of NUMRANK might be further reduced if */
- /* > some singular values are computed as zeros. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] IWORK */
- /* > \verbatim */
- /* > IWORK is INTEGER array, dimension (f2cmax(1, LIWORK)). */
- /* > On exit, IWORK(1:N) contains column pivoting permutation of the */
- /* > rank revealing QR factorization. */
- /* > If JOBP = 'P', IWORK(N+1:N+M-1) contains the indices of the sequence */
- /* > of row swaps used in row pivoting. These can be used to restore the */
- /* > left singular vectors in the case JOBU = 'F'. */
- /* > */
- /* > If LIWORK, LCWORK, or LRWORK = -1, then on exit, if INFO = 0, */
- /* > LIWORK(1) returns the minimal LIWORK. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LIWORK */
- /* > \verbatim */
- /* > LIWORK is INTEGER */
- /* > The dimension of the array IWORK. */
- /* > LIWORK >= N + M - 1, if JOBP = 'P'; */
- /* > LIWORK >= N if JOBP = 'N'. */
- /* > */
- /* > If LIWORK = -1, then a workspace query is assumed; the routine */
- /* > only calculates and returns the optimal and minimal sizes */
- /* > for the CWORK, IWORK, and RWORK arrays, and no error */
- /* > message related to LCWORK is issued by XERBLA. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] CWORK */
- /* > \verbatim */
- /* > CWORK is COMPLEX array, dimension (f2cmax(2, LCWORK)), used as a workspace. */
- /* > On exit, if, on entry, LCWORK.NE.-1, CWORK(1:N) contains parameters */
- /* > needed to recover the Q factor from the QR factorization computed by */
- /* > CGEQP3. */
- /* > */
- /* > If LIWORK, LCWORK, or LRWORK = -1, then on exit, if INFO = 0, */
- /* > CWORK(1) returns the optimal LCWORK, and */
- /* > CWORK(2) returns the minimal LCWORK. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] LCWORK */
- /* > \verbatim */
- /* > LCWORK is INTEGER */
- /* > The dimension of the array CWORK. It is determined as follows: */
- /* > Let LWQP3 = N+1, LWCON = 2*N, and let */
- /* > LWUNQ = { MAX( N, 1 ), if JOBU = 'R', 'S', or 'U' */
- /* > { MAX( M, 1 ), if JOBU = 'A' */
- /* > LWSVD = MAX( 3*N, 1 ) */
- /* > LWLQF = MAX( N/2, 1 ), LWSVD2 = MAX( 3*(N/2), 1 ), LWUNLQ = MAX( N, 1 ), */
- /* > LWQRF = MAX( N/2, 1 ), LWUNQ2 = MAX( N, 1 ) */
- /* > Then the minimal value of LCWORK is: */
- /* > = MAX( N + LWQP3, LWSVD ) if only the singular values are needed; */
- /* > = MAX( N + LWQP3, LWCON, LWSVD ) if only the singular values are needed, */
- /* > and a scaled condition estimate requested; */
- /* > */
- /* > = N + MAX( LWQP3, LWSVD, LWUNQ ) if the singular values and the left */
- /* > singular vectors are requested; */
- /* > = N + MAX( LWQP3, LWCON, LWSVD, LWUNQ ) if the singular values and the left */
- /* > singular vectors are requested, and also */
- /* > a scaled condition estimate requested; */
- /* > */
- /* > = N + MAX( LWQP3, LWSVD ) if the singular values and the right */
- /* > singular vectors are requested; */
- /* > = N + MAX( LWQP3, LWCON, LWSVD ) if the singular values and the right */
- /* > singular vectors are requested, and also */
- /* > a scaled condition etimate requested; */
- /* > */
- /* > = N + MAX( LWQP3, LWSVD, LWUNQ ) if the full SVD is requested with JOBV = 'R'; */
- /* > independent of JOBR; */
- /* > = N + MAX( LWQP3, LWCON, LWSVD, LWUNQ ) if the full SVD is requested, */
- /* > JOBV = 'R' and, also a scaled condition */
- /* > estimate requested; independent of JOBR; */
- /* > = MAX( N + MAX( LWQP3, LWSVD, LWUNQ ), */
- /* > N + MAX( LWQP3, N/2+LWLQF, N/2+LWSVD2, N/2+LWUNLQ, LWUNQ) ) if the */
- /* > full SVD is requested with JOBV = 'A' or 'V', and */
- /* > JOBR ='N' */
- /* > = MAX( N + MAX( LWQP3, LWCON, LWSVD, LWUNQ ), */
- /* > N + MAX( LWQP3, LWCON, N/2+LWLQF, N/2+LWSVD2, N/2+LWUNLQ, LWUNQ ) ) */
- /* > if the full SVD is requested with JOBV = 'A' or 'V', and */
- /* > JOBR ='N', and also a scaled condition number estimate */
- /* > requested. */
- /* > = MAX( N + MAX( LWQP3, LWSVD, LWUNQ ), */
- /* > N + MAX( LWQP3, N/2+LWQRF, N/2+LWSVD2, N/2+LWUNQ2, LWUNQ ) ) if the */
- /* > full SVD is requested with JOBV = 'A', 'V', and JOBR ='T' */
- /* > = MAX( N + MAX( LWQP3, LWCON, LWSVD, LWUNQ ), */
- /* > N + MAX( LWQP3, LWCON, N/2+LWQRF, N/2+LWSVD2, N/2+LWUNQ2, LWUNQ ) ) */
- /* > if the full SVD is requested with JOBV = 'A', 'V' and */
- /* > JOBR ='T', and also a scaled condition number estimate */
- /* > requested. */
- /* > Finally, LCWORK must be at least two: LCWORK = MAX( 2, LCWORK ). */
- /* > */
- /* > If LCWORK = -1, then a workspace query is assumed; the routine */
- /* > only calculates and returns the optimal and minimal sizes */
- /* > for the CWORK, IWORK, and RWORK arrays, and no error */
- /* > message related to LCWORK is issued by XERBLA. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] RWORK */
- /* > \verbatim */
- /* > RWORK is REAL array, dimension (f2cmax(1, LRWORK)). */
- /* > On exit, */
- /* > 1. If JOBA = 'E', RWORK(1) contains an estimate of the condition */
- /* > number of column scaled A. If A = C * D where D is diagonal and C */
- /* > has unit columns in the Euclidean norm, then, assuming full column rank, */
- /* > N^(-1/4) * RWORK(1) <= ||pinv(C)||_2 <= N^(1/4) * RWORK(1). */
- /* > Otherwise, RWORK(1) = -1. */
- /* > 2. RWORK(2) contains the number of singular values computed as */
- /* > exact zeros in CGESVD applied to the upper triangular or trapeziodal */
- /* > R (from the initial QR factorization). In case of early exit (no call to */
- /* > CGESVD, such as in the case of zero matrix) RWORK(2) = -1. */
- /* > */
- /* > If LIWORK, LCWORK, or LRWORK = -1, then on exit, if INFO = 0, */
- /* > RWORK(1) returns the minimal LRWORK. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LRWORK */
- /* > \verbatim */
- /* > LRWORK is INTEGER. */
- /* > The dimension of the array RWORK. */
- /* > If JOBP ='P', then LRWORK >= MAX(2, M, 5*N); */
- /* > Otherwise, LRWORK >= MAX(2, 5*N). */
- /* > */
- /* > If LRWORK = -1, then a workspace query is assumed; the routine */
- /* > only calculates and returns the optimal and minimal sizes */
- /* > for the CWORK, IWORK, and RWORK arrays, and no error */
- /* > message related to LCWORK is issued by XERBLA. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit. */
- /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
- /* > > 0: if CBDSQR did not converge, INFO specifies how many superdiagonals */
- /* > of an intermediate bidiagonal form B (computed in CGESVD) did not */
- /* > converge to zero. */
- /* > \endverbatim */
-
- /* > \par Further Details: */
- /* ======================== */
- /* > */
- /* > \verbatim */
- /* > */
- /* > 1. The data movement (matrix transpose) is coded using simple nested */
- /* > DO-loops because BLAS and LAPACK do not provide corresponding subroutines. */
- /* > Those DO-loops are easily identified in this source code - by the CONTINUE */
- /* > statements labeled with 11**. In an optimized version of this code, the */
- /* > nested DO loops should be replaced with calls to an optimized subroutine. */
- /* > 2. This code scales A by 1/SQRT(M) if the largest ABS(A(i,j)) could cause */
- /* > column norm overflow. This is the minial precaution and it is left to the */
- /* > SVD routine (CGESVD) to do its own preemptive scaling if potential over- */
- /* > or underflows are detected. To avoid repeated scanning of the array A, */
- /* > an optimal implementation would do all necessary scaling before calling */
- /* > CGESVD and the scaling in CGESVD can be switched off. */
- /* > 3. Other comments related to code optimization are given in comments in the */
- /* > code, enlosed in [[double brackets]]. */
- /* > \endverbatim */
-
- /* > \par Bugs, examples and comments */
- /* =========================== */
-
- /* > \verbatim */
- /* > Please report all bugs and send interesting examples and/or comments to */
- /* > drmac@math.hr. Thank you. */
- /* > \endverbatim */
-
- /* > \par References */
- /* =============== */
-
- /* > \verbatim */
- /* > [1] Zlatko Drmac, Algorithm 977: A QR-Preconditioned QR SVD Method for */
- /* > Computing the SVD with High Accuracy. ACM Trans. Math. Softw. */
- /* > 44(1): 11:1-11:30 (2017) */
- /* > */
- /* > SIGMA library, xGESVDQ section updated February 2016. */
- /* > Developed and coded by Zlatko Drmac, Department of Mathematics */
- /* > University of Zagreb, Croatia, drmac@math.hr */
- /* > \endverbatim */
-
-
- /* > \par Contributors: */
- /* ================== */
- /* > */
- /* > \verbatim */
- /* > Developed and coded by Zlatko Drmac, Department of Mathematics */
- /* > University of Zagreb, Croatia, drmac@math.hr */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date November 2018 */
-
- /* > \ingroup complexGEsing */
-
- /* ===================================================================== */
- /* Subroutine */ void cgesvdq_(char *joba, char *jobp, char *jobr, char *jobu,
- char *jobv, integer *m, integer *n, complex *a, integer *lda, real *s,
- complex *u, integer *ldu, complex *v, integer *ldv, integer *numrank,
- integer *iwork, integer *liwork, complex *cwork, integer *lcwork,
- real *rwork, integer *lrwork, integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, u_dim1, u_offset, v_dim1, v_offset, i__1, i__2,
- i__3;
- real r__1;
- complex q__1;
-
- /* Local variables */
- integer lwrk_cunmqr__, lwrk_cgesvd2__, ierr;
- complex ctmp;
- real rtmp;
- integer lwrk_cunmqr2__, optratio;
- logical lsvc0, accla;
- integer lwqp3;
- logical acclh, acclm;
- integer p, q;
- logical conda;
- extern logical lsame_(char *, char *);
- logical lsvec;
- real sfmin, epsln;
- integer lwcon;
- logical rsvec;
- integer lwlqf, lwqrf;
- logical wntua;
- integer n1, lwsvd;
- logical dntwu, dntwv, wntuf, wntva;
- integer lwunq;
- logical wntur, wntus, wntvr;
- extern /* Subroutine */ void cgeqp3_(integer *, integer *, complex *,
- integer *, integer *, complex *, complex *, integer *, real *,
- integer *);
- extern real scnrm2_(integer *, complex *, integer *);
- integer lwsvd2, lwunq2;
- extern real clange_(char *, integer *, integer *, complex *, integer *,
- real *);
- integer nr;
- extern /* Subroutine */ void cgelqf_(integer *, integer *, complex *,
- integer *, complex *, complex *, integer *, integer *), clascl_(
- char *, integer *, integer *, real *, real *, integer *, integer *
- , complex *, integer *, integer *);
- real sconda;
- extern /* Subroutine */ void cgeqrf_(integer *, integer *, complex *,
- integer *, complex *, complex *, integer *, integer *), csscal_(
- integer *, real *, complex *, integer *);
- extern real slamch_(char *);
- extern /* Subroutine */ void cgesvd_(char *, char *, integer *, integer *,
- complex *, integer *, real *, complex *, integer *, complex *,
- integer *, complex *, integer *, real *, integer *), clacpy_(char *, integer *, integer *, complex *, integer
- *, complex *, integer *), claset_(char *, integer *,
- integer *, complex *, complex *, complex *, integer *);
- extern int xerbla_(char *, integer *, ftnlen);
- extern void clapmt_(logical *, integer *,
- integer *, complex *, integer *, integer *), slascl_(char *,
- integer *, integer *, real *, real *, integer *, integer *, real *
- , integer *, integer *), cpocon_(char *, integer *,
- complex *, integer *, real *, real *, complex *, real *, integer *
- );
- extern integer isamax_(integer *, real *, integer *);
- extern /* Subroutine */ int claswp_(integer *, complex *, integer *,
- integer *, integer *, integer *, integer *);
- extern void slaset_(char *,
- integer *, integer *, real *, real *, real *, integer *);
- complex cdummy[1];
- extern /* Subroutine */ void cunmlq_(char *, char *, integer *, integer *,
- integer *, complex *, integer *, complex *, complex *, integer *,
- complex *, integer *, integer *), cunmqr_(char *,
- char *, integer *, integer *, integer *, complex *, integer *,
- complex *, complex *, integer *, complex *, integer *, integer *);
- integer minwrk;
- logical rtrans;
- real rdummy[1];
- logical lquery;
- integer lwunlq, optwrk;
- logical rowprm;
- real big;
- integer minwrk2;
- logical ascaled;
- integer lwrk_cgeqp3__, optwrk2, lwrk_cgelqf__, iminwrk, lwrk_cgeqrf__,
- lwrk_cgesvd__, rminwrk, lwrk_cunmlq__;
-
-
- /* ===================================================================== */
-
-
- /* Test the input arguments */
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --s;
- u_dim1 = *ldu;
- u_offset = 1 + u_dim1 * 1;
- u -= u_offset;
- v_dim1 = *ldv;
- v_offset = 1 + v_dim1 * 1;
- v -= v_offset;
- --iwork;
- --cwork;
- --rwork;
-
- /* Function Body */
- wntus = lsame_(jobu, "S") || lsame_(jobu, "U");
- wntur = lsame_(jobu, "R");
- wntua = lsame_(jobu, "A");
- wntuf = lsame_(jobu, "F");
- lsvc0 = wntus || wntur || wntua;
- lsvec = lsvc0 || wntuf;
- dntwu = lsame_(jobu, "N");
-
- wntvr = lsame_(jobv, "R");
- wntva = lsame_(jobv, "A") || lsame_(jobv, "V");
- rsvec = wntvr || wntva;
- dntwv = lsame_(jobv, "N");
-
- accla = lsame_(joba, "A");
- acclm = lsame_(joba, "M");
- conda = lsame_(joba, "E");
- acclh = lsame_(joba, "H") || conda;
-
- rowprm = lsame_(jobp, "P");
- rtrans = lsame_(jobr, "T");
-
- if (rowprm) {
- /* Computing MAX */
- i__1 = 1, i__2 = *n + *m - 1;
- iminwrk = f2cmax(i__1,i__2);
- /* Computing MAX */
- i__1 = f2cmax(2,*m), i__2 = *n * 5;
- rminwrk = f2cmax(i__1,i__2);
- } else {
- iminwrk = f2cmax(1,*n);
- /* Computing MAX */
- i__1 = 2, i__2 = *n * 5;
- rminwrk = f2cmax(i__1,i__2);
- }
- lquery = *liwork == -1 || *lcwork == -1 || *lrwork == -1;
- *info = 0;
- if (! (accla || acclm || acclh)) {
- *info = -1;
- } else if (! (rowprm || lsame_(jobp, "N"))) {
- *info = -2;
- } else if (! (rtrans || lsame_(jobr, "N"))) {
- *info = -3;
- } else if (! (lsvec || dntwu)) {
- *info = -4;
- } else if (wntur && wntva) {
- *info = -5;
- } else if (! (rsvec || dntwv)) {
- *info = -5;
- } else if (*m < 0) {
- *info = -6;
- } else if (*n < 0 || *n > *m) {
- *info = -7;
- } else if (*lda < f2cmax(1,*m)) {
- *info = -9;
- } else if (*ldu < 1 || lsvc0 && *ldu < *m || wntuf && *ldu < *n) {
- *info = -12;
- } else if (*ldv < 1 || rsvec && *ldv < *n || conda && *ldv < *n) {
- *info = -14;
- } else if (*liwork < iminwrk && ! lquery) {
- *info = -17;
- }
-
-
- if (*info == 0) {
-
- /* Compute workspace */
- /* [[The expressions for computing the minimal and the optimal */
- /* values of LCWORK are written with a lot of redundancy and */
- /* can be simplified. However, this detailed form is easier for */
- /* maintenance and modifications of the code.]] */
-
- lwqp3 = *n + 1;
- if (wntus || wntur) {
- lwunq = f2cmax(*n,1);
- } else if (wntua) {
- lwunq = f2cmax(*m,1);
- }
- lwcon = *n << 1;
- /* Computing MAX */
- i__1 = *n * 3;
- lwsvd = f2cmax(i__1,1);
- if (lquery) {
- cgeqp3_(m, n, &a[a_offset], lda, &iwork[1], cdummy, cdummy, &c_n1,
- rdummy, &ierr);
- lwrk_cgeqp3__ = (integer) cdummy[0].r;
- if (wntus || wntur) {
- cunmqr_("L", "N", m, n, n, &a[a_offset], lda, cdummy, &u[
- u_offset], ldu, cdummy, &c_n1, &ierr);
- lwrk_cunmqr__ = (integer) cdummy[0].r;
- } else if (wntua) {
- cunmqr_("L", "N", m, m, n, &a[a_offset], lda, cdummy, &u[
- u_offset], ldu, cdummy, &c_n1, &ierr);
- lwrk_cunmqr__ = (integer) cdummy[0].r;
- } else {
- lwrk_cunmqr__ = 0;
- }
- }
- minwrk = 2;
- optwrk = 2;
- if (! (lsvec || rsvec)) {
- /* only the singular values are requested */
- if (conda) {
- /* Computing MAX */
- i__1 = *n + lwqp3, i__1 = f2cmax(i__1,lwcon);
- minwrk = f2cmax(i__1,lwsvd);
- } else {
- /* Computing MAX */
- i__1 = *n + lwqp3;
- minwrk = f2cmax(i__1,lwsvd);
- }
- if (lquery) {
- cgesvd_("N", "N", n, n, &a[a_offset], lda, &s[1], &u[u_offset]
- , ldu, &v[v_offset], ldv, cdummy, &c_n1, rdummy, &
- ierr);
- lwrk_cgesvd__ = (integer) cdummy[0].r;
- if (conda) {
- /* Computing MAX */
- i__1 = *n + lwrk_cgeqp3__, i__2 = *n + lwcon, i__1 = f2cmax(
- i__1,i__2);
- optwrk = f2cmax(i__1,lwrk_cgesvd__);
- } else {
- /* Computing MAX */
- i__1 = *n + lwrk_cgeqp3__;
- optwrk = f2cmax(i__1,lwrk_cgesvd__);
- }
- }
- } else if (lsvec && ! rsvec) {
- /* singular values and the left singular vectors are requested */
- if (conda) {
- /* Computing MAX */
- i__1 = f2cmax(lwqp3,lwcon), i__1 = f2cmax(i__1,lwsvd);
- minwrk = *n + f2cmax(i__1,lwunq);
- } else {
- /* Computing MAX */
- i__1 = f2cmax(lwqp3,lwsvd);
- minwrk = *n + f2cmax(i__1,lwunq);
- }
- if (lquery) {
- if (rtrans) {
- cgesvd_("N", "O", n, n, &a[a_offset], lda, &s[1], &u[
- u_offset], ldu, &v[v_offset], ldv, cdummy, &c_n1,
- rdummy, &ierr);
- } else {
- cgesvd_("O", "N", n, n, &a[a_offset], lda, &s[1], &u[
- u_offset], ldu, &v[v_offset], ldv, cdummy, &c_n1,
- rdummy, &ierr);
- }
- lwrk_cgesvd__ = (integer) cdummy[0].r;
- if (conda) {
- /* Computing MAX */
- i__1 = f2cmax(lwrk_cgeqp3__,lwcon), i__1 = f2cmax(i__1,
- lwrk_cgesvd__);
- optwrk = *n + f2cmax(i__1,lwrk_cunmqr__);
- } else {
- /* Computing MAX */
- i__1 = f2cmax(lwrk_cgeqp3__,lwrk_cgesvd__);
- optwrk = *n + f2cmax(i__1,lwrk_cunmqr__);
- }
- }
- } else if (rsvec && ! lsvec) {
- /* singular values and the right singular vectors are requested */
- if (conda) {
- /* Computing MAX */
- i__1 = f2cmax(lwqp3,lwcon);
- minwrk = *n + f2cmax(i__1,lwsvd);
- } else {
- minwrk = *n + f2cmax(lwqp3,lwsvd);
- }
- if (lquery) {
- if (rtrans) {
- cgesvd_("O", "N", n, n, &a[a_offset], lda, &s[1], &u[
- u_offset], ldu, &v[v_offset], ldv, cdummy, &c_n1,
- rdummy, &ierr);
- } else {
- cgesvd_("N", "O", n, n, &a[a_offset], lda, &s[1], &u[
- u_offset], ldu, &v[v_offset], ldv, cdummy, &c_n1,
- rdummy, &ierr);
- }
- lwrk_cgesvd__ = (integer) cdummy[0].r;
- if (conda) {
- /* Computing MAX */
- i__1 = f2cmax(lwrk_cgeqp3__,lwcon);
- optwrk = *n + f2cmax(i__1,lwrk_cgesvd__);
- } else {
- optwrk = *n + f2cmax(lwrk_cgeqp3__,lwrk_cgesvd__);
- }
- }
- } else {
- /* full SVD is requested */
- if (rtrans) {
- /* Computing MAX */
- i__1 = f2cmax(lwqp3,lwsvd);
- minwrk = f2cmax(i__1,lwunq);
- if (conda) {
- minwrk = f2cmax(minwrk,lwcon);
- }
- minwrk += *n;
- if (wntva) {
- /* Computing MAX */
- i__1 = *n / 2;
- lwqrf = f2cmax(i__1,1);
- /* Computing MAX */
- i__1 = *n / 2 * 3;
- lwsvd2 = f2cmax(i__1,1);
- lwunq2 = f2cmax(*n,1);
- /* Computing MAX */
- i__1 = lwqp3, i__2 = *n / 2 + lwqrf, i__1 = f2cmax(i__1,i__2)
- , i__2 = *n / 2 + lwsvd2, i__1 = f2cmax(i__1,i__2),
- i__2 = *n / 2 + lwunq2, i__1 = f2cmax(i__1,i__2);
- minwrk2 = f2cmax(i__1,lwunq);
- if (conda) {
- minwrk2 = f2cmax(minwrk2,lwcon);
- }
- minwrk2 = *n + minwrk2;
- minwrk = f2cmax(minwrk,minwrk2);
- }
- } else {
- /* Computing MAX */
- i__1 = f2cmax(lwqp3,lwsvd);
- minwrk = f2cmax(i__1,lwunq);
- if (conda) {
- minwrk = f2cmax(minwrk,lwcon);
- }
- minwrk += *n;
- if (wntva) {
- /* Computing MAX */
- i__1 = *n / 2;
- lwlqf = f2cmax(i__1,1);
- /* Computing MAX */
- i__1 = *n / 2 * 3;
- lwsvd2 = f2cmax(i__1,1);
- lwunlq = f2cmax(*n,1);
- /* Computing MAX */
- i__1 = lwqp3, i__2 = *n / 2 + lwlqf, i__1 = f2cmax(i__1,i__2)
- , i__2 = *n / 2 + lwsvd2, i__1 = f2cmax(i__1,i__2),
- i__2 = *n / 2 + lwunlq, i__1 = f2cmax(i__1,i__2);
- minwrk2 = f2cmax(i__1,lwunq);
- if (conda) {
- minwrk2 = f2cmax(minwrk2,lwcon);
- }
- minwrk2 = *n + minwrk2;
- minwrk = f2cmax(minwrk,minwrk2);
- }
- }
- if (lquery) {
- if (rtrans) {
- cgesvd_("O", "A", n, n, &a[a_offset], lda, &s[1], &u[
- u_offset], ldu, &v[v_offset], ldv, cdummy, &c_n1,
- rdummy, &ierr);
- lwrk_cgesvd__ = (integer) cdummy[0].r;
- /* Computing MAX */
- i__1 = f2cmax(lwrk_cgeqp3__,lwrk_cgesvd__);
- optwrk = f2cmax(i__1,lwrk_cunmqr__);
- if (conda) {
- optwrk = f2cmax(optwrk,lwcon);
- }
- optwrk = *n + optwrk;
- if (wntva) {
- i__1 = *n / 2;
- cgeqrf_(n, &i__1, &u[u_offset], ldu, cdummy, cdummy, &
- c_n1, &ierr);
- lwrk_cgeqrf__ = (integer) cdummy[0].r;
- i__1 = *n / 2;
- i__2 = *n / 2;
- cgesvd_("S", "O", &i__1, &i__2, &v[v_offset], ldv, &s[
- 1], &u[u_offset], ldu, &v[v_offset], ldv,
- cdummy, &c_n1, rdummy, &ierr);
- lwrk_cgesvd2__ = (integer) cdummy[0].r;
- i__1 = *n / 2;
- cunmqr_("R", "C", n, n, &i__1, &u[u_offset], ldu,
- cdummy, &v[v_offset], ldv, cdummy, &c_n1, &
- ierr);
- lwrk_cunmqr2__ = (integer) cdummy[0].r;
- /* Computing MAX */
- i__1 = lwrk_cgeqp3__, i__2 = *n / 2 + lwrk_cgeqrf__,
- i__1 = f2cmax(i__1,i__2), i__2 = *n / 2 +
- lwrk_cgesvd2__, i__1 = f2cmax(i__1,i__2), i__2 =
- *n / 2 + lwrk_cunmqr2__;
- optwrk2 = f2cmax(i__1,i__2);
- if (conda) {
- optwrk2 = f2cmax(optwrk2,lwcon);
- }
- optwrk2 = *n + optwrk2;
- optwrk = f2cmax(optwrk,optwrk2);
- }
- } else {
- cgesvd_("S", "O", n, n, &a[a_offset], lda, &s[1], &u[
- u_offset], ldu, &v[v_offset], ldv, cdummy, &c_n1,
- rdummy, &ierr);
- lwrk_cgesvd__ = (integer) cdummy[0].r;
- /* Computing MAX */
- i__1 = f2cmax(lwrk_cgeqp3__,lwrk_cgesvd__);
- optwrk = f2cmax(i__1,lwrk_cunmqr__);
- if (conda) {
- optwrk = f2cmax(optwrk,lwcon);
- }
- optwrk = *n + optwrk;
- if (wntva) {
- i__1 = *n / 2;
- cgelqf_(&i__1, n, &u[u_offset], ldu, cdummy, cdummy, &
- c_n1, &ierr);
- lwrk_cgelqf__ = (integer) cdummy[0].r;
- i__1 = *n / 2;
- i__2 = *n / 2;
- cgesvd_("S", "O", &i__1, &i__2, &v[v_offset], ldv, &s[
- 1], &u[u_offset], ldu, &v[v_offset], ldv,
- cdummy, &c_n1, rdummy, &ierr);
- lwrk_cgesvd2__ = (integer) cdummy[0].r;
- i__1 = *n / 2;
- cunmlq_("R", "N", n, n, &i__1, &u[u_offset], ldu,
- cdummy, &v[v_offset], ldv, cdummy, &c_n1, &
- ierr);
- lwrk_cunmlq__ = (integer) cdummy[0].r;
- /* Computing MAX */
- i__1 = lwrk_cgeqp3__, i__2 = *n / 2 + lwrk_cgelqf__,
- i__1 = f2cmax(i__1,i__2), i__2 = *n / 2 +
- lwrk_cgesvd2__, i__1 = f2cmax(i__1,i__2), i__2 =
- *n / 2 + lwrk_cunmlq__;
- optwrk2 = f2cmax(i__1,i__2);
- if (conda) {
- optwrk2 = f2cmax(optwrk2,lwcon);
- }
- optwrk2 = *n + optwrk2;
- optwrk = f2cmax(optwrk,optwrk2);
- }
- }
- }
- }
-
- minwrk = f2cmax(2,minwrk);
- optwrk = f2cmax(2,optwrk);
- if (*lcwork < minwrk && ! lquery) {
- *info = -19;
- }
-
- }
-
- if (*info == 0 && *lrwork < rminwrk && ! lquery) {
- *info = -21;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("CGESVDQ", &i__1, (ftnlen)7);
- return;
- } else if (lquery) {
-
- /* Return optimal workspace */
-
- iwork[1] = iminwrk;
- cwork[1].r = (real) optwrk, cwork[1].i = 0.f;
- cwork[2].r = (real) minwrk, cwork[2].i = 0.f;
- rwork[1] = (real) rminwrk;
- return;
- }
-
- /* Quick return if the matrix is void. */
-
- if (*m == 0 || *n == 0) {
- return;
- }
-
- big = slamch_("O");
- ascaled = FALSE_;
- if (rowprm) {
- /* ell-infinity norm - this enhances numerical robustness in */
- /* the case of differently scaled rows. */
- i__1 = *m;
- for (p = 1; p <= i__1; ++p) {
- /* RWORK(p) = ABS( A(p,ICAMAX(N,A(p,1),LDA)) ) */
- /* [[CLANGE will return NaN if an entry of the p-th row is Nan]] */
- rwork[p] = clange_("M", &c__1, n, &a[p + a_dim1], lda, rdummy);
- if (rwork[p] != rwork[p] || rwork[p] * 0.f != 0.f) {
- *info = -8;
- i__2 = -(*info);
- xerbla_("CGESVDQ", &i__2, (ftnlen)7);
- return;
- }
- /* L1904: */
- }
- i__1 = *m - 1;
- for (p = 1; p <= i__1; ++p) {
- i__2 = *m - p + 1;
- q = isamax_(&i__2, &rwork[p], &c__1) + p - 1;
- iwork[*n + p] = q;
- if (p != q) {
- rtmp = rwork[p];
- rwork[p] = rwork[q];
- rwork[q] = rtmp;
- }
- /* L1952: */
- }
-
- if (rwork[1] == 0.f) {
- /* Quick return: A is the M x N zero matrix. */
- *numrank = 0;
- slaset_("G", n, &c__1, &c_b74, &c_b74, &s[1], n);
- if (wntus) {
- claset_("G", m, n, &c_b1, &c_b2, &u[u_offset], ldu)
- ;
- }
- if (wntua) {
- claset_("G", m, m, &c_b1, &c_b2, &u[u_offset], ldu)
- ;
- }
- if (wntva) {
- claset_("G", n, n, &c_b1, &c_b2, &v[v_offset], ldv)
- ;
- }
- if (wntuf) {
- claset_("G", n, &c__1, &c_b1, &c_b1, &cwork[1], n);
- claset_("G", m, n, &c_b1, &c_b2, &u[u_offset], ldu)
- ;
- }
- i__1 = *n;
- for (p = 1; p <= i__1; ++p) {
- iwork[p] = p;
- /* L5001: */
- }
- if (rowprm) {
- i__1 = *n + *m - 1;
- for (p = *n + 1; p <= i__1; ++p) {
- iwork[p] = p - *n;
- /* L5002: */
- }
- }
- if (conda) {
- rwork[1] = -1.f;
- }
- rwork[2] = -1.f;
- return;
- }
-
- if (rwork[1] > big / sqrt((real) (*m))) {
- /* matrix by 1/sqrt(M) if too large entry detected */
- r__1 = sqrt((real) (*m));
- clascl_("G", &c__0, &c__0, &r__1, &c_b87, m, n, &a[a_offset], lda,
- &ierr);
- ascaled = TRUE_;
- }
- i__1 = *m - 1;
- claswp_(n, &a[a_offset], lda, &c__1, &i__1, &iwork[*n + 1], &c__1);
- }
-
- /* norms overflows during the QR factorization. The SVD procedure should */
- /* have its own scaling to save the singular values from overflows and */
- /* underflows. That depends on the SVD procedure. */
-
- if (! rowprm) {
- rtmp = clange_("M", m, n, &a[a_offset], lda, &rwork[1]);
- if (rtmp != rtmp || rtmp * 0.f != 0.f) {
- *info = -8;
- i__1 = -(*info);
- xerbla_("CGESVDQ", &i__1, (ftnlen)7);
- return;
- }
- if (rtmp > big / sqrt((real) (*m))) {
- /* matrix by 1/sqrt(M) if too large entry detected */
- r__1 = sqrt((real) (*m));
- clascl_("G", &c__0, &c__0, &r__1, &c_b87, m, n, &a[a_offset], lda,
- &ierr);
- ascaled = TRUE_;
- }
- }
-
-
- /* A * P = Q * [ R ] */
- /* [ 0 ] */
-
- i__1 = *n;
- for (p = 1; p <= i__1; ++p) {
- iwork[p] = 0;
- /* L1963: */
- }
- i__1 = *lcwork - *n;
- cgeqp3_(m, n, &a[a_offset], lda, &iwork[1], &cwork[1], &cwork[*n + 1], &
- i__1, &rwork[1], &ierr);
-
- /* If the user requested accuracy level allows truncation in the */
- /* computed upper triangular factor, the matrix R is examined and, */
- /* if possible, replaced with its leading upper trapezoidal part. */
-
- epsln = slamch_("E");
- sfmin = slamch_("S");
- /* SMALL = SFMIN / EPSLN */
- nr = *n;
-
- if (accla) {
-
- /* Standard absolute error bound suffices. All sigma_i with */
- /* sigma_i < N*EPS*||A||_F are flushed to zero. This is an */
- /* aggressive enforcement of lower numerical rank by introducing a */
- /* backward error of the order of N*EPS*||A||_F. */
- nr = 1;
- rtmp = sqrt((real) (*n)) * epsln;
- i__1 = *n;
- for (p = 2; p <= i__1; ++p) {
- if (c_abs(&a[p + p * a_dim1]) < rtmp * c_abs(&a[a_dim1 + 1])) {
- goto L3002;
- }
- ++nr;
- /* L3001: */
- }
- L3002:
-
- ;
- } else if (acclm) {
- /* Sudden drop on the diagonal of R is used as the criterion for being */
- /* close-to-rank-deficient. The threshold is set to EPSLN=SLAMCH('E'). */
- /* [[This can be made more flexible by replacing this hard-coded value */
- /* with a user specified threshold.]] Also, the values that underflow */
- /* will be truncated. */
- nr = 1;
- i__1 = *n;
- for (p = 2; p <= i__1; ++p) {
- if (c_abs(&a[p + p * a_dim1]) < epsln * c_abs(&a[p - 1 + (p - 1) *
- a_dim1]) || c_abs(&a[p + p * a_dim1]) < sfmin) {
- goto L3402;
- }
- ++nr;
- /* L3401: */
- }
- L3402:
-
- ;
- } else {
- /* obvious case of zero pivots. */
- /* R(i,i)=0 => R(i:N,i:N)=0. */
- nr = 1;
- i__1 = *n;
- for (p = 2; p <= i__1; ++p) {
- if (c_abs(&a[p + p * a_dim1]) == 0.f) {
- goto L3502;
- }
- ++nr;
- /* L3501: */
- }
- L3502:
-
- if (conda) {
- /* Estimate the scaled condition number of A. Use the fact that it is */
- /* the same as the scaled condition number of R. */
- clacpy_("U", n, n, &a[a_offset], lda, &v[v_offset], ldv);
- /* Only the leading NR x NR submatrix of the triangular factor */
- /* is considered. Only if NR=N will this give a reliable error */
- /* bound. However, even for NR < N, this can be used on an */
- /* expert level and obtain useful information in the sense of */
- /* perturbation theory. */
- i__1 = nr;
- for (p = 1; p <= i__1; ++p) {
- rtmp = scnrm2_(&p, &v[p * v_dim1 + 1], &c__1);
- r__1 = 1.f / rtmp;
- csscal_(&p, &r__1, &v[p * v_dim1 + 1], &c__1);
- /* L3053: */
- }
- if (! (lsvec || rsvec)) {
- cpocon_("U", &nr, &v[v_offset], ldv, &c_b87, &rtmp, &cwork[1],
- &rwork[1], &ierr);
- } else {
- cpocon_("U", &nr, &v[v_offset], ldv, &c_b87, &rtmp, &cwork[*n
- + 1], &rwork[1], &ierr);
- }
- sconda = 1.f / sqrt(rtmp);
- /* For NR=N, SCONDA is an estimate of SQRT(||(R^* * R)^(-1)||_1), */
- /* N^(-1/4) * SCONDA <= ||R^(-1)||_2 <= N^(1/4) * SCONDA */
- /* See the reference [1] for more details. */
- }
-
- }
-
- if (wntur) {
- n1 = nr;
- } else if (wntus || wntuf) {
- n1 = *n;
- } else if (wntua) {
- n1 = *m;
- }
-
- if (! (rsvec || lsvec)) {
- /* ....................................................................... */
- /* ....................................................................... */
- if (rtrans) {
-
- /* the upper triangle of [A] to zero. */
- i__1 = f2cmin(*n,nr);
- for (p = 1; p <= i__1; ++p) {
- i__2 = p + p * a_dim1;
- r_cnjg(&q__1, &a[p + p * a_dim1]);
- a[i__2].r = q__1.r, a[i__2].i = q__1.i;
- i__2 = *n;
- for (q = p + 1; q <= i__2; ++q) {
- i__3 = q + p * a_dim1;
- r_cnjg(&q__1, &a[p + q * a_dim1]);
- a[i__3].r = q__1.r, a[i__3].i = q__1.i;
- if (q <= nr) {
- i__3 = p + q * a_dim1;
- a[i__3].r = 0.f, a[i__3].i = 0.f;
- }
- /* L1147: */
- }
- /* L1146: */
- }
-
- cgesvd_("N", "N", n, &nr, &a[a_offset], lda, &s[1], &u[u_offset],
- ldu, &v[v_offset], ldv, &cwork[1], lcwork, &rwork[1],
- info);
-
- } else {
-
-
- if (nr > 1) {
- i__1 = nr - 1;
- i__2 = nr - 1;
- claset_("L", &i__1, &i__2, &c_b1, &c_b1, &a[a_dim1 + 2], lda);
- }
- cgesvd_("N", "N", &nr, n, &a[a_offset], lda, &s[1], &u[u_offset],
- ldu, &v[v_offset], ldv, &cwork[1], lcwork, &rwork[1],
- info);
-
- }
-
- } else if (lsvec && ! rsvec) {
- /* ....................................................................... */
- /* ......................................................................."""""""" */
- if (rtrans) {
- /* vectors of R */
- i__1 = nr;
- for (p = 1; p <= i__1; ++p) {
- i__2 = *n;
- for (q = p; q <= i__2; ++q) {
- i__3 = q + p * u_dim1;
- r_cnjg(&q__1, &a[p + q * a_dim1]);
- u[i__3].r = q__1.r, u[i__3].i = q__1.i;
- /* L1193: */
- }
- /* L1192: */
- }
- if (nr > 1) {
- i__1 = nr - 1;
- i__2 = nr - 1;
- claset_("U", &i__1, &i__2, &c_b1, &c_b1, &u[(u_dim1 << 1) + 1]
- , ldu);
- }
- /* vectors overwrite [U](1:NR,1:NR) as conjugate transposed. These */
- /* will be pre-multiplied by Q to build the left singular vectors of A. */
- i__1 = *lcwork - *n;
- cgesvd_("N", "O", n, &nr, &u[u_offset], ldu, &s[1], &u[u_offset],
- ldu, &u[u_offset], ldu, &cwork[*n + 1], &i__1, &rwork[1],
- info);
-
- i__1 = nr;
- for (p = 1; p <= i__1; ++p) {
- i__2 = p + p * u_dim1;
- r_cnjg(&q__1, &u[p + p * u_dim1]);
- u[i__2].r = q__1.r, u[i__2].i = q__1.i;
- i__2 = nr;
- for (q = p + 1; q <= i__2; ++q) {
- r_cnjg(&q__1, &u[q + p * u_dim1]);
- ctmp.r = q__1.r, ctmp.i = q__1.i;
- i__3 = q + p * u_dim1;
- r_cnjg(&q__1, &u[p + q * u_dim1]);
- u[i__3].r = q__1.r, u[i__3].i = q__1.i;
- i__3 = p + q * u_dim1;
- u[i__3].r = ctmp.r, u[i__3].i = ctmp.i;
- /* L1120: */
- }
- /* L1119: */
- }
-
- } else {
- clacpy_("U", &nr, n, &a[a_offset], lda, &u[u_offset], ldu);
- if (nr > 1) {
- i__1 = nr - 1;
- i__2 = nr - 1;
- claset_("L", &i__1, &i__2, &c_b1, &c_b1, &u[u_dim1 + 2], ldu);
- }
- /* vectors overwrite [U](1:NR,1:NR) */
- i__1 = *lcwork - *n;
- cgesvd_("O", "N", &nr, n, &u[u_offset], ldu, &s[1], &u[u_offset],
- ldu, &v[v_offset], ldv, &cwork[*n + 1], &i__1, &rwork[1],
- info);
- /* R. These will be pre-multiplied by Q to build the left singular */
- /* vectors of A. */
- }
-
- /* (M x NR) or (M x N) or (M x M). */
- if (nr < *m && ! wntuf) {
- i__1 = *m - nr;
- claset_("A", &i__1, &nr, &c_b1, &c_b1, &u[nr + 1 + u_dim1], ldu);
- if (nr < n1) {
- i__1 = n1 - nr;
- claset_("A", &nr, &i__1, &c_b1, &c_b1, &u[(nr + 1) * u_dim1 +
- 1], ldu);
- i__1 = *m - nr;
- i__2 = n1 - nr;
- claset_("A", &i__1, &i__2, &c_b1, &c_b2, &u[nr + 1 + (nr + 1)
- * u_dim1], ldu);
- }
- }
-
- /* The Q matrix from the first QRF is built into the left singular */
- /* vectors matrix U. */
-
- if (! wntuf) {
- i__1 = *lcwork - *n;
- cunmqr_("L", "N", m, &n1, n, &a[a_offset], lda, &cwork[1], &u[
- u_offset], ldu, &cwork[*n + 1], &i__1, &ierr);
- }
- if (rowprm && ! wntuf) {
- i__1 = *m - 1;
- claswp_(&n1, &u[u_offset], ldu, &c__1, &i__1, &iwork[*n + 1], &
- c_n1);
- }
-
- } else if (rsvec && ! lsvec) {
- /* ....................................................................... */
- /* ....................................................................... */
- if (rtrans) {
- i__1 = nr;
- for (p = 1; p <= i__1; ++p) {
- i__2 = *n;
- for (q = p; q <= i__2; ++q) {
- i__3 = q + p * v_dim1;
- r_cnjg(&q__1, &a[p + q * a_dim1]);
- v[i__3].r = q__1.r, v[i__3].i = q__1.i;
- /* L1166: */
- }
- /* L1165: */
- }
- if (nr > 1) {
- i__1 = nr - 1;
- i__2 = nr - 1;
- claset_("U", &i__1, &i__2, &c_b1, &c_b1, &v[(v_dim1 << 1) + 1]
- , ldv);
- }
- /* vectors not computed */
- if (wntvr || nr == *n) {
- i__1 = *lcwork - *n;
- cgesvd_("O", "N", n, &nr, &v[v_offset], ldv, &s[1], &u[
- u_offset], ldu, &u[u_offset], ldu, &cwork[*n + 1], &
- i__1, &rwork[1], info);
-
- i__1 = nr;
- for (p = 1; p <= i__1; ++p) {
- i__2 = p + p * v_dim1;
- r_cnjg(&q__1, &v[p + p * v_dim1]);
- v[i__2].r = q__1.r, v[i__2].i = q__1.i;
- i__2 = nr;
- for (q = p + 1; q <= i__2; ++q) {
- r_cnjg(&q__1, &v[q + p * v_dim1]);
- ctmp.r = q__1.r, ctmp.i = q__1.i;
- i__3 = q + p * v_dim1;
- r_cnjg(&q__1, &v[p + q * v_dim1]);
- v[i__3].r = q__1.r, v[i__3].i = q__1.i;
- i__3 = p + q * v_dim1;
- v[i__3].r = ctmp.r, v[i__3].i = ctmp.i;
- /* L1122: */
- }
- /* L1121: */
- }
-
- if (nr < *n) {
- i__1 = nr;
- for (p = 1; p <= i__1; ++p) {
- i__2 = *n;
- for (q = nr + 1; q <= i__2; ++q) {
- i__3 = p + q * v_dim1;
- r_cnjg(&q__1, &v[q + p * v_dim1]);
- v[i__3].r = q__1.r, v[i__3].i = q__1.i;
- /* L1104: */
- }
- /* L1103: */
- }
- }
- clapmt_(&c_false, &nr, n, &v[v_offset], ldv, &iwork[1]);
- } else {
- /* [!] This is simple implementation that augments [V](1:N,1:NR) */
- /* by padding a zero block. In the case NR << N, a more efficient */
- /* way is to first use the QR factorization. For more details */
- /* how to implement this, see the " FULL SVD " branch. */
- i__1 = *n - nr;
- claset_("G", n, &i__1, &c_b1, &c_b1, &v[(nr + 1) * v_dim1 + 1]
- , ldv);
- i__1 = *lcwork - *n;
- cgesvd_("O", "N", n, n, &v[v_offset], ldv, &s[1], &u[u_offset]
- , ldu, &u[u_offset], ldu, &cwork[*n + 1], &i__1, &
- rwork[1], info);
-
- i__1 = *n;
- for (p = 1; p <= i__1; ++p) {
- i__2 = p + p * v_dim1;
- r_cnjg(&q__1, &v[p + p * v_dim1]);
- v[i__2].r = q__1.r, v[i__2].i = q__1.i;
- i__2 = *n;
- for (q = p + 1; q <= i__2; ++q) {
- r_cnjg(&q__1, &v[q + p * v_dim1]);
- ctmp.r = q__1.r, ctmp.i = q__1.i;
- i__3 = q + p * v_dim1;
- r_cnjg(&q__1, &v[p + q * v_dim1]);
- v[i__3].r = q__1.r, v[i__3].i = q__1.i;
- i__3 = p + q * v_dim1;
- v[i__3].r = ctmp.r, v[i__3].i = ctmp.i;
- /* L1124: */
- }
- /* L1123: */
- }
- clapmt_(&c_false, n, n, &v[v_offset], ldv, &iwork[1]);
- }
-
- } else {
- clacpy_("U", &nr, n, &a[a_offset], lda, &v[v_offset], ldv);
- if (nr > 1) {
- i__1 = nr - 1;
- i__2 = nr - 1;
- claset_("L", &i__1, &i__2, &c_b1, &c_b1, &v[v_dim1 + 2], ldv);
- }
- /* vectors stored in U(1:NR,1:NR) */
- if (wntvr || nr == *n) {
- i__1 = *lcwork - *n;
- cgesvd_("N", "O", &nr, n, &v[v_offset], ldv, &s[1], &u[
- u_offset], ldu, &v[v_offset], ldv, &cwork[*n + 1], &
- i__1, &rwork[1], info);
- clapmt_(&c_false, &nr, n, &v[v_offset], ldv, &iwork[1]);
- } else {
- /* [!] This is simple implementation that augments [V](1:NR,1:N) */
- /* by padding a zero block. In the case NR << N, a more efficient */
- /* way is to first use the LQ factorization. For more details */
- /* how to implement this, see the " FULL SVD " branch. */
- i__1 = *n - nr;
- claset_("G", &i__1, n, &c_b1, &c_b1, &v[nr + 1 + v_dim1], ldv);
- i__1 = *lcwork - *n;
- cgesvd_("N", "O", n, n, &v[v_offset], ldv, &s[1], &u[u_offset]
- , ldu, &v[v_offset], ldv, &cwork[*n + 1], &i__1, &
- rwork[1], info);
- clapmt_(&c_false, n, n, &v[v_offset], ldv, &iwork[1]);
- }
- /* vectors of A. */
- }
-
- } else {
- /* ....................................................................... */
- /* ....................................................................... */
- if (rtrans) {
-
-
- if (wntvr || nr == *n) {
- /* vectors of R**H */
- i__1 = nr;
- for (p = 1; p <= i__1; ++p) {
- i__2 = *n;
- for (q = p; q <= i__2; ++q) {
- i__3 = q + p * v_dim1;
- r_cnjg(&q__1, &a[p + q * a_dim1]);
- v[i__3].r = q__1.r, v[i__3].i = q__1.i;
- /* L1169: */
- }
- /* L1168: */
- }
- if (nr > 1) {
- i__1 = nr - 1;
- i__2 = nr - 1;
- claset_("U", &i__1, &i__2, &c_b1, &c_b1, &v[(v_dim1 << 1)
- + 1], ldv);
- }
-
- /* singular vectors of R**H stored in [U](1:NR,1:NR) as conjugate */
- /* transposed */
- i__1 = *lcwork - *n;
- cgesvd_("O", "A", n, &nr, &v[v_offset], ldv, &s[1], &v[
- v_offset], ldv, &u[u_offset], ldu, &cwork[*n + 1], &
- i__1, &rwork[1], info);
- i__1 = nr;
- for (p = 1; p <= i__1; ++p) {
- i__2 = p + p * v_dim1;
- r_cnjg(&q__1, &v[p + p * v_dim1]);
- v[i__2].r = q__1.r, v[i__2].i = q__1.i;
- i__2 = nr;
- for (q = p + 1; q <= i__2; ++q) {
- r_cnjg(&q__1, &v[q + p * v_dim1]);
- ctmp.r = q__1.r, ctmp.i = q__1.i;
- i__3 = q + p * v_dim1;
- r_cnjg(&q__1, &v[p + q * v_dim1]);
- v[i__3].r = q__1.r, v[i__3].i = q__1.i;
- i__3 = p + q * v_dim1;
- v[i__3].r = ctmp.r, v[i__3].i = ctmp.i;
- /* L1116: */
- }
- /* L1115: */
- }
- if (nr < *n) {
- i__1 = nr;
- for (p = 1; p <= i__1; ++p) {
- i__2 = *n;
- for (q = nr + 1; q <= i__2; ++q) {
- i__3 = p + q * v_dim1;
- r_cnjg(&q__1, &v[q + p * v_dim1]);
- v[i__3].r = q__1.r, v[i__3].i = q__1.i;
- /* L1102: */
- }
- /* L1101: */
- }
- }
- clapmt_(&c_false, &nr, n, &v[v_offset], ldv, &iwork[1]);
-
- i__1 = nr;
- for (p = 1; p <= i__1; ++p) {
- i__2 = p + p * u_dim1;
- r_cnjg(&q__1, &u[p + p * u_dim1]);
- u[i__2].r = q__1.r, u[i__2].i = q__1.i;
- i__2 = nr;
- for (q = p + 1; q <= i__2; ++q) {
- r_cnjg(&q__1, &u[q + p * u_dim1]);
- ctmp.r = q__1.r, ctmp.i = q__1.i;
- i__3 = q + p * u_dim1;
- r_cnjg(&q__1, &u[p + q * u_dim1]);
- u[i__3].r = q__1.r, u[i__3].i = q__1.i;
- i__3 = p + q * u_dim1;
- u[i__3].r = ctmp.r, u[i__3].i = ctmp.i;
- /* L1118: */
- }
- /* L1117: */
- }
-
- if (nr < *m && ! wntuf) {
- i__1 = *m - nr;
- claset_("A", &i__1, &nr, &c_b1, &c_b1, &u[nr + 1 + u_dim1]
- , ldu);
- if (nr < n1) {
- i__1 = n1 - nr;
- claset_("A", &nr, &i__1, &c_b1, &c_b1, &u[(nr + 1) *
- u_dim1 + 1], ldu);
- i__1 = *m - nr;
- i__2 = n1 - nr;
- claset_("A", &i__1, &i__2, &c_b1, &c_b2, &u[nr + 1 + (
- nr + 1) * u_dim1], ldu);
- }
- }
-
- } else {
- /* vectors of R**H */
- /* [[The optimal ratio N/NR for using QRF instead of padding */
- /* with zeros. Here hard coded to 2; it must be at least */
- /* two due to work space constraints.]] */
- /* OPTRATIO = ILAENV(6, 'CGESVD', 'S' // 'O', NR,N,0,0) */
- /* OPTRATIO = MAX( OPTRATIO, 2 ) */
- optratio = 2;
- if (optratio * nr > *n) {
- i__1 = nr;
- for (p = 1; p <= i__1; ++p) {
- i__2 = *n;
- for (q = p; q <= i__2; ++q) {
- i__3 = q + p * v_dim1;
- r_cnjg(&q__1, &a[p + q * a_dim1]);
- v[i__3].r = q__1.r, v[i__3].i = q__1.i;
- /* L1199: */
- }
- /* L1198: */
- }
- if (nr > 1) {
- i__1 = nr - 1;
- i__2 = nr - 1;
- claset_("U", &i__1, &i__2, &c_b1, &c_b1, &v[(v_dim1 <<
- 1) + 1], ldv);
- }
-
- i__1 = *n - nr;
- claset_("A", n, &i__1, &c_b1, &c_b1, &v[(nr + 1) * v_dim1
- + 1], ldv);
- i__1 = *lcwork - *n;
- cgesvd_("O", "A", n, n, &v[v_offset], ldv, &s[1], &v[
- v_offset], ldv, &u[u_offset], ldu, &cwork[*n + 1],
- &i__1, &rwork[1], info);
-
- i__1 = *n;
- for (p = 1; p <= i__1; ++p) {
- i__2 = p + p * v_dim1;
- r_cnjg(&q__1, &v[p + p * v_dim1]);
- v[i__2].r = q__1.r, v[i__2].i = q__1.i;
- i__2 = *n;
- for (q = p + 1; q <= i__2; ++q) {
- r_cnjg(&q__1, &v[q + p * v_dim1]);
- ctmp.r = q__1.r, ctmp.i = q__1.i;
- i__3 = q + p * v_dim1;
- r_cnjg(&q__1, &v[p + q * v_dim1]);
- v[i__3].r = q__1.r, v[i__3].i = q__1.i;
- i__3 = p + q * v_dim1;
- v[i__3].r = ctmp.r, v[i__3].i = ctmp.i;
- /* L1114: */
- }
- /* L1113: */
- }
- clapmt_(&c_false, n, n, &v[v_offset], ldv, &iwork[1]);
- /* (M x N1), i.e. (M x N) or (M x M). */
-
- i__1 = *n;
- for (p = 1; p <= i__1; ++p) {
- i__2 = p + p * u_dim1;
- r_cnjg(&q__1, &u[p + p * u_dim1]);
- u[i__2].r = q__1.r, u[i__2].i = q__1.i;
- i__2 = *n;
- for (q = p + 1; q <= i__2; ++q) {
- r_cnjg(&q__1, &u[q + p * u_dim1]);
- ctmp.r = q__1.r, ctmp.i = q__1.i;
- i__3 = q + p * u_dim1;
- r_cnjg(&q__1, &u[p + q * u_dim1]);
- u[i__3].r = q__1.r, u[i__3].i = q__1.i;
- i__3 = p + q * u_dim1;
- u[i__3].r = ctmp.r, u[i__3].i = ctmp.i;
- /* L1112: */
- }
- /* L1111: */
- }
-
- if (*n < *m && ! wntuf) {
- i__1 = *m - *n;
- claset_("A", &i__1, n, &c_b1, &c_b1, &u[*n + 1 +
- u_dim1], ldu);
- if (*n < n1) {
- i__1 = n1 - *n;
- claset_("A", n, &i__1, &c_b1, &c_b1, &u[(*n + 1) *
- u_dim1 + 1], ldu);
- i__1 = *m - *n;
- i__2 = n1 - *n;
- claset_("A", &i__1, &i__2, &c_b1, &c_b2, &u[*n +
- 1 + (*n + 1) * u_dim1], ldu);
- }
- }
- } else {
- /* singular vectors of R */
- i__1 = nr;
- for (p = 1; p <= i__1; ++p) {
- i__2 = *n;
- for (q = p; q <= i__2; ++q) {
- i__3 = q + (nr + p) * u_dim1;
- r_cnjg(&q__1, &a[p + q * a_dim1]);
- u[i__3].r = q__1.r, u[i__3].i = q__1.i;
- /* L1197: */
- }
- /* L1196: */
- }
- if (nr > 1) {
- i__1 = nr - 1;
- i__2 = nr - 1;
- claset_("U", &i__1, &i__2, &c_b1, &c_b1, &u[(nr + 2) *
- u_dim1 + 1], ldu);
- }
- i__1 = *lcwork - *n - nr;
- cgeqrf_(n, &nr, &u[(nr + 1) * u_dim1 + 1], ldu, &cwork[*n
- + 1], &cwork[*n + nr + 1], &i__1, &ierr);
- i__1 = nr;
- for (p = 1; p <= i__1; ++p) {
- i__2 = *n;
- for (q = 1; q <= i__2; ++q) {
- i__3 = q + p * v_dim1;
- r_cnjg(&q__1, &u[p + (nr + q) * u_dim1]);
- v[i__3].r = q__1.r, v[i__3].i = q__1.i;
- /* L1144: */
- }
- /* L1143: */
- }
- i__1 = nr - 1;
- i__2 = nr - 1;
- claset_("U", &i__1, &i__2, &c_b1, &c_b1, &v[(v_dim1 << 1)
- + 1], ldv);
- i__1 = *lcwork - *n - nr;
- cgesvd_("S", "O", &nr, &nr, &v[v_offset], ldv, &s[1], &u[
- u_offset], ldu, &v[v_offset], ldv, &cwork[*n + nr
- + 1], &i__1, &rwork[1], info);
- i__1 = *n - nr;
- claset_("A", &i__1, &nr, &c_b1, &c_b1, &v[nr + 1 + v_dim1]
- , ldv);
- i__1 = *n - nr;
- claset_("A", &nr, &i__1, &c_b1, &c_b1, &v[(nr + 1) *
- v_dim1 + 1], ldv);
- i__1 = *n - nr;
- i__2 = *n - nr;
- claset_("A", &i__1, &i__2, &c_b1, &c_b2, &v[nr + 1 + (nr
- + 1) * v_dim1], ldv);
- i__1 = *lcwork - *n - nr;
- cunmqr_("R", "C", n, n, &nr, &u[(nr + 1) * u_dim1 + 1],
- ldu, &cwork[*n + 1], &v[v_offset], ldv, &cwork[*n
- + nr + 1], &i__1, &ierr);
- clapmt_(&c_false, n, n, &v[v_offset], ldv, &iwork[1]);
- /* (M x NR) or (M x N) or (M x M). */
- if (nr < *m && ! wntuf) {
- i__1 = *m - nr;
- claset_("A", &i__1, &nr, &c_b1, &c_b1, &u[nr + 1 +
- u_dim1], ldu);
- if (nr < n1) {
- i__1 = n1 - nr;
- claset_("A", &nr, &i__1, &c_b1, &c_b1, &u[(nr + 1)
- * u_dim1 + 1], ldu);
- i__1 = *m - nr;
- i__2 = n1 - nr;
- claset_("A", &i__1, &i__2, &c_b1, &c_b2, &u[nr +
- 1 + (nr + 1) * u_dim1], ldu);
- }
- }
- }
- }
-
- } else {
-
-
- if (wntvr || nr == *n) {
- clacpy_("U", &nr, n, &a[a_offset], lda, &v[v_offset], ldv);
- if (nr > 1) {
- i__1 = nr - 1;
- i__2 = nr - 1;
- claset_("L", &i__1, &i__2, &c_b1, &c_b1, &v[v_dim1 + 2],
- ldv);
- }
- /* singular vectors of R stored in [U](1:NR,1:NR) */
- i__1 = *lcwork - *n;
- cgesvd_("S", "O", &nr, n, &v[v_offset], ldv, &s[1], &u[
- u_offset], ldu, &v[v_offset], ldv, &cwork[*n + 1], &
- i__1, &rwork[1], info);
- clapmt_(&c_false, &nr, n, &v[v_offset], ldv, &iwork[1]);
- /* (M x NR) or (M x N) or (M x M). */
- if (nr < *m && ! wntuf) {
- i__1 = *m - nr;
- claset_("A", &i__1, &nr, &c_b1, &c_b1, &u[nr + 1 + u_dim1]
- , ldu);
- if (nr < n1) {
- i__1 = n1 - nr;
- claset_("A", &nr, &i__1, &c_b1, &c_b1, &u[(nr + 1) *
- u_dim1 + 1], ldu);
- i__1 = *m - nr;
- i__2 = n1 - nr;
- claset_("A", &i__1, &i__2, &c_b1, &c_b2, &u[nr + 1 + (
- nr + 1) * u_dim1], ldu);
- }
- }
-
- } else {
- /* is then N1 (N or M) */
- /* [[The optimal ratio N/NR for using LQ instead of padding */
- /* with zeros. Here hard coded to 2; it must be at least */
- /* two due to work space constraints.]] */
- /* OPTRATIO = ILAENV(6, 'CGESVD', 'S' // 'O', NR,N,0,0) */
- /* OPTRATIO = MAX( OPTRATIO, 2 ) */
- optratio = 2;
- if (optratio * nr > *n) {
- clacpy_("U", &nr, n, &a[a_offset], lda, &v[v_offset], ldv);
- if (nr > 1) {
- i__1 = nr - 1;
- i__2 = nr - 1;
- claset_("L", &i__1, &i__2, &c_b1, &c_b1, &v[v_dim1 +
- 2], ldv);
- }
- /* singular vectors of R stored in [U](1:NR,1:NR) */
- i__1 = *n - nr;
- claset_("A", &i__1, n, &c_b1, &c_b1, &v[nr + 1 + v_dim1],
- ldv);
- i__1 = *lcwork - *n;
- cgesvd_("S", "O", n, n, &v[v_offset], ldv, &s[1], &u[
- u_offset], ldu, &v[v_offset], ldv, &cwork[*n + 1],
- &i__1, &rwork[1], info);
- clapmt_(&c_false, n, n, &v[v_offset], ldv, &iwork[1]);
- /* singular vectors of A. The leading N left singular vectors */
- /* are in [U](1:N,1:N) */
- /* (M x N1), i.e. (M x N) or (M x M). */
- if (*n < *m && ! wntuf) {
- i__1 = *m - *n;
- claset_("A", &i__1, n, &c_b1, &c_b1, &u[*n + 1 +
- u_dim1], ldu);
- if (*n < n1) {
- i__1 = n1 - *n;
- claset_("A", n, &i__1, &c_b1, &c_b1, &u[(*n + 1) *
- u_dim1 + 1], ldu);
- i__1 = *m - *n;
- i__2 = n1 - *n;
- claset_("A", &i__1, &i__2, &c_b1, &c_b2, &u[*n +
- 1 + (*n + 1) * u_dim1], ldu);
- }
- }
- } else {
- clacpy_("U", &nr, n, &a[a_offset], lda, &u[nr + 1 +
- u_dim1], ldu);
- if (nr > 1) {
- i__1 = nr - 1;
- i__2 = nr - 1;
- claset_("L", &i__1, &i__2, &c_b1, &c_b1, &u[nr + 2 +
- u_dim1], ldu);
- }
- i__1 = *lcwork - *n - nr;
- cgelqf_(&nr, n, &u[nr + 1 + u_dim1], ldu, &cwork[*n + 1],
- &cwork[*n + nr + 1], &i__1, &ierr);
- clacpy_("L", &nr, &nr, &u[nr + 1 + u_dim1], ldu, &v[
- v_offset], ldv);
- if (nr > 1) {
- i__1 = nr - 1;
- i__2 = nr - 1;
- claset_("U", &i__1, &i__2, &c_b1, &c_b1, &v[(v_dim1 <<
- 1) + 1], ldv);
- }
- i__1 = *lcwork - *n - nr;
- cgesvd_("S", "O", &nr, &nr, &v[v_offset], ldv, &s[1], &u[
- u_offset], ldu, &v[v_offset], ldv, &cwork[*n + nr
- + 1], &i__1, &rwork[1], info);
- i__1 = *n - nr;
- claset_("A", &i__1, &nr, &c_b1, &c_b1, &v[nr + 1 + v_dim1]
- , ldv);
- i__1 = *n - nr;
- claset_("A", &nr, &i__1, &c_b1, &c_b1, &v[(nr + 1) *
- v_dim1 + 1], ldv);
- i__1 = *n - nr;
- i__2 = *n - nr;
- claset_("A", &i__1, &i__2, &c_b1, &c_b2, &v[nr + 1 + (nr
- + 1) * v_dim1], ldv);
- i__1 = *lcwork - *n - nr;
- cunmlq_("R", "N", n, n, &nr, &u[nr + 1 + u_dim1], ldu, &
- cwork[*n + 1], &v[v_offset], ldv, &cwork[*n + nr
- + 1], &i__1, &ierr);
- clapmt_(&c_false, n, n, &v[v_offset], ldv, &iwork[1]);
- /* (M x NR) or (M x N) or (M x M). */
- if (nr < *m && ! wntuf) {
- i__1 = *m - nr;
- claset_("A", &i__1, &nr, &c_b1, &c_b1, &u[nr + 1 +
- u_dim1], ldu);
- if (nr < n1) {
- i__1 = n1 - nr;
- claset_("A", &nr, &i__1, &c_b1, &c_b1, &u[(nr + 1)
- * u_dim1 + 1], ldu);
- i__1 = *m - nr;
- i__2 = n1 - nr;
- claset_("A", &i__1, &i__2, &c_b1, &c_b2, &u[nr +
- 1 + (nr + 1) * u_dim1], ldu);
- }
- }
- }
- }
- }
-
- /* The Q matrix from the first QRF is built into the left singular */
- /* vectors matrix U. */
-
- if (! wntuf) {
- i__1 = *lcwork - *n;
- cunmqr_("L", "N", m, &n1, n, &a[a_offset], lda, &cwork[1], &u[
- u_offset], ldu, &cwork[*n + 1], &i__1, &ierr);
- }
- if (rowprm && ! wntuf) {
- i__1 = *m - 1;
- claswp_(&n1, &u[u_offset], ldu, &c__1, &i__1, &iwork[*n + 1], &
- c_n1);
- }
-
- /* ... end of the "full SVD" branch */
- }
-
- /* Check whether some singular values are returned as zeros, e.g. */
- /* due to underflow, and update the numerical rank. */
- p = nr;
- for (q = p; q >= 1; --q) {
- if (s[q] > 0.f) {
- goto L4002;
- }
- --nr;
- /* L4001: */
- }
- L4002:
-
- /* singular values are set to zero. */
- if (nr < *n) {
- i__1 = *n - nr;
- slaset_("G", &i__1, &c__1, &c_b74, &c_b74, &s[nr + 1], n);
- }
- /* values. */
- if (ascaled) {
- r__1 = sqrt((real) (*m));
- slascl_("G", &c__0, &c__0, &c_b87, &r__1, &nr, &c__1, &s[1], n, &ierr);
- }
- if (conda) {
- rwork[1] = sconda;
- }
- rwork[2] = (real) (p - nr);
- /* exact zeros in CGESVD() applied to the (possibly truncated) */
- /* full row rank triangular (trapezoidal) factor of A. */
- *numrank = nr;
-
- return;
-
- /* End of CGESVDQ */
-
- } /* cgesvdq_ */
|