|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef int logical;
- typedef short int shortlogical;
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
- #define F2C_proc_par_types 1
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
- /* Table of constant values */
-
- static complex c_b1 = {0.f,0.f};
- static complex c_b2 = {1.f,0.f};
- static integer c__1 = 1;
-
- /* > \brief \b CGBBRD */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download CGBBRD + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgbbrd.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgbbrd.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgbbrd.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE CGBBRD( VECT, M, N, NCC, KL, KU, AB, LDAB, D, E, Q, */
- /* LDQ, PT, LDPT, C, LDC, WORK, RWORK, INFO ) */
-
- /* CHARACTER VECT */
- /* INTEGER INFO, KL, KU, LDAB, LDC, LDPT, LDQ, M, N, NCC */
- /* REAL D( * ), E( * ), RWORK( * ) */
- /* COMPLEX AB( LDAB, * ), C( LDC, * ), PT( LDPT, * ), */
- /* $ Q( LDQ, * ), WORK( * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > CGBBRD reduces a complex general m-by-n band matrix A to real upper */
- /* > bidiagonal form B by a unitary transformation: Q**H * A * P = B. */
- /* > */
- /* > The routine computes B, and optionally forms Q or P**H, or computes */
- /* > Q**H*C for a given matrix C. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] VECT */
- /* > \verbatim */
- /* > VECT is CHARACTER*1 */
- /* > Specifies whether or not the matrices Q and P**H are to be */
- /* > formed. */
- /* > = 'N': do not form Q or P**H; */
- /* > = 'Q': form Q only; */
- /* > = 'P': form P**H only; */
- /* > = 'B': form both. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] M */
- /* > \verbatim */
- /* > M is INTEGER */
- /* > The number of rows of the matrix A. M >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The number of columns of the matrix A. N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] NCC */
- /* > \verbatim */
- /* > NCC is INTEGER */
- /* > The number of columns of the matrix C. NCC >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] KL */
- /* > \verbatim */
- /* > KL is INTEGER */
- /* > The number of subdiagonals of the matrix A. KL >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] KU */
- /* > \verbatim */
- /* > KU is INTEGER */
- /* > The number of superdiagonals of the matrix A. KU >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] AB */
- /* > \verbatim */
- /* > AB is COMPLEX array, dimension (LDAB,N) */
- /* > On entry, the m-by-n band matrix A, stored in rows 1 to */
- /* > KL+KU+1. The j-th column of A is stored in the j-th column of */
- /* > the array AB as follows: */
- /* > AB(ku+1+i-j,j) = A(i,j) for f2cmax(1,j-ku)<=i<=f2cmin(m,j+kl). */
- /* > On exit, A is overwritten by values generated during the */
- /* > reduction. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDAB */
- /* > \verbatim */
- /* > LDAB is INTEGER */
- /* > The leading dimension of the array A. LDAB >= KL+KU+1. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] D */
- /* > \verbatim */
- /* > D is REAL array, dimension (f2cmin(M,N)) */
- /* > The diagonal elements of the bidiagonal matrix B. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] E */
- /* > \verbatim */
- /* > E is REAL array, dimension (f2cmin(M,N)-1) */
- /* > The superdiagonal elements of the bidiagonal matrix B. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] Q */
- /* > \verbatim */
- /* > Q is COMPLEX array, dimension (LDQ,M) */
- /* > If VECT = 'Q' or 'B', the m-by-m unitary matrix Q. */
- /* > If VECT = 'N' or 'P', the array Q is not referenced. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDQ */
- /* > \verbatim */
- /* > LDQ is INTEGER */
- /* > The leading dimension of the array Q. */
- /* > LDQ >= f2cmax(1,M) if VECT = 'Q' or 'B'; LDQ >= 1 otherwise. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] PT */
- /* > \verbatim */
- /* > PT is COMPLEX array, dimension (LDPT,N) */
- /* > If VECT = 'P' or 'B', the n-by-n unitary matrix P'. */
- /* > If VECT = 'N' or 'Q', the array PT is not referenced. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDPT */
- /* > \verbatim */
- /* > LDPT is INTEGER */
- /* > The leading dimension of the array PT. */
- /* > LDPT >= f2cmax(1,N) if VECT = 'P' or 'B'; LDPT >= 1 otherwise. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] C */
- /* > \verbatim */
- /* > C is COMPLEX array, dimension (LDC,NCC) */
- /* > On entry, an m-by-ncc matrix C. */
- /* > On exit, C is overwritten by Q**H*C. */
- /* > C is not referenced if NCC = 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDC */
- /* > \verbatim */
- /* > LDC is INTEGER */
- /* > The leading dimension of the array C. */
- /* > LDC >= f2cmax(1,M) if NCC > 0; LDC >= 1 if NCC = 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > WORK is COMPLEX array, dimension (f2cmax(M,N)) */
- /* > \endverbatim */
- /* > */
- /* > \param[out] RWORK */
- /* > \verbatim */
- /* > RWORK is REAL array, dimension (f2cmax(M,N)) */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit. */
- /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date December 2016 */
-
- /* > \ingroup complexGBcomputational */
-
- /* ===================================================================== */
- /* Subroutine */ void cgbbrd_(char *vect, integer *m, integer *n, integer *ncc,
- integer *kl, integer *ku, complex *ab, integer *ldab, real *d__,
- real *e, complex *q, integer *ldq, complex *pt, integer *ldpt,
- complex *c__, integer *ldc, complex *work, real *rwork, integer *info)
- {
- /* System generated locals */
- integer ab_dim1, ab_offset, c_dim1, c_offset, pt_dim1, pt_offset, q_dim1,
- q_offset, i__1, i__2, i__3, i__4, i__5, i__6, i__7;
- complex q__1, q__2, q__3;
-
- /* Local variables */
- integer inca;
- real abst;
- extern /* Subroutine */ void crot_(integer *, complex *, integer *,
- complex *, integer *, real *, complex *);
- integer i__, j, l;
- complex t;
- extern /* Subroutine */ void cscal_(integer *, complex *, complex *,
- integer *);
- extern logical lsame_(char *, char *);
- logical wantb, wantc;
- integer minmn;
- logical wantq;
- integer j1, j2, kb;
- complex ra;
- real rc;
- integer kk;
- complex rb;
- integer ml, nr, mu;
- complex rs;
- extern /* Subroutine */ void claset_(char *, integer *, integer *, complex
- *, complex *, complex *, integer *), clartg_(complex *,
- complex *, real *, complex *, complex *);
- extern int xerbla_(char *, integer *, ftnlen);
- extern void clargv_(integer *, complex *, integer *, complex *,
- integer *, real *, integer *), clartv_(integer *, complex *,
- integer *, complex *, integer *, real *, complex *, integer *);
- integer kb1, ml0;
- logical wantpt;
- integer mu0, klm, kun, nrt, klu1;
-
-
- /* -- LAPACK computational routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* December 2016 */
-
-
- /* ===================================================================== */
-
-
- /* Test the input parameters */
-
- /* Parameter adjustments */
- ab_dim1 = *ldab;
- ab_offset = 1 + ab_dim1 * 1;
- ab -= ab_offset;
- --d__;
- --e;
- q_dim1 = *ldq;
- q_offset = 1 + q_dim1 * 1;
- q -= q_offset;
- pt_dim1 = *ldpt;
- pt_offset = 1 + pt_dim1 * 1;
- pt -= pt_offset;
- c_dim1 = *ldc;
- c_offset = 1 + c_dim1 * 1;
- c__ -= c_offset;
- --work;
- --rwork;
-
- /* Function Body */
- wantb = lsame_(vect, "B");
- wantq = lsame_(vect, "Q") || wantb;
- wantpt = lsame_(vect, "P") || wantb;
- wantc = *ncc > 0;
- klu1 = *kl + *ku + 1;
- *info = 0;
- if (! wantq && ! wantpt && ! lsame_(vect, "N")) {
- *info = -1;
- } else if (*m < 0) {
- *info = -2;
- } else if (*n < 0) {
- *info = -3;
- } else if (*ncc < 0) {
- *info = -4;
- } else if (*kl < 0) {
- *info = -5;
- } else if (*ku < 0) {
- *info = -6;
- } else if (*ldab < klu1) {
- *info = -8;
- } else if (*ldq < 1 || wantq && *ldq < f2cmax(1,*m)) {
- *info = -12;
- } else if (*ldpt < 1 || wantpt && *ldpt < f2cmax(1,*n)) {
- *info = -14;
- } else if (*ldc < 1 || wantc && *ldc < f2cmax(1,*m)) {
- *info = -16;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("CGBBRD", &i__1, (ftnlen)6);
- return;
- }
-
- /* Initialize Q and P**H to the unit matrix, if needed */
-
- if (wantq) {
- claset_("Full", m, m, &c_b1, &c_b2, &q[q_offset], ldq);
- }
- if (wantpt) {
- claset_("Full", n, n, &c_b1, &c_b2, &pt[pt_offset], ldpt);
- }
-
- /* Quick return if possible. */
-
- if (*m == 0 || *n == 0) {
- return;
- }
-
- minmn = f2cmin(*m,*n);
-
- if (*kl + *ku > 1) {
-
- /* Reduce to upper bidiagonal form if KU > 0; if KU = 0, reduce */
- /* first to lower bidiagonal form and then transform to upper */
- /* bidiagonal */
-
- if (*ku > 0) {
- ml0 = 1;
- mu0 = 2;
- } else {
- ml0 = 2;
- mu0 = 1;
- }
-
- /* Wherever possible, plane rotations are generated and applied in */
- /* vector operations of length NR over the index set J1:J2:KLU1. */
-
- /* The complex sines of the plane rotations are stored in WORK, */
- /* and the real cosines in RWORK. */
-
- /* Computing MIN */
- i__1 = *m - 1;
- klm = f2cmin(i__1,*kl);
- /* Computing MIN */
- i__1 = *n - 1;
- kun = f2cmin(i__1,*ku);
- kb = klm + kun;
- kb1 = kb + 1;
- inca = kb1 * *ldab;
- nr = 0;
- j1 = klm + 2;
- j2 = 1 - kun;
-
- i__1 = minmn;
- for (i__ = 1; i__ <= i__1; ++i__) {
-
- /* Reduce i-th column and i-th row of matrix to bidiagonal form */
-
- ml = klm + 1;
- mu = kun + 1;
- i__2 = kb;
- for (kk = 1; kk <= i__2; ++kk) {
- j1 += kb;
- j2 += kb;
-
- /* generate plane rotations to annihilate nonzero elements */
- /* which have been created below the band */
-
- if (nr > 0) {
- clargv_(&nr, &ab[klu1 + (j1 - klm - 1) * ab_dim1], &inca,
- &work[j1], &kb1, &rwork[j1], &kb1);
- }
-
- /* apply plane rotations from the left */
-
- i__3 = kb;
- for (l = 1; l <= i__3; ++l) {
- if (j2 - klm + l - 1 > *n) {
- nrt = nr - 1;
- } else {
- nrt = nr;
- }
- if (nrt > 0) {
- clartv_(&nrt, &ab[klu1 - l + (j1 - klm + l - 1) *
- ab_dim1], &inca, &ab[klu1 - l + 1 + (j1 - klm
- + l - 1) * ab_dim1], &inca, &rwork[j1], &work[
- j1], &kb1);
- }
- /* L10: */
- }
-
- if (ml > ml0) {
- if (ml <= *m - i__ + 1) {
-
- /* generate plane rotation to annihilate a(i+ml-1,i) */
- /* within the band, and apply rotation from the left */
-
- clartg_(&ab[*ku + ml - 1 + i__ * ab_dim1], &ab[*ku +
- ml + i__ * ab_dim1], &rwork[i__ + ml - 1], &
- work[i__ + ml - 1], &ra);
- i__3 = *ku + ml - 1 + i__ * ab_dim1;
- ab[i__3].r = ra.r, ab[i__3].i = ra.i;
- if (i__ < *n) {
- /* Computing MIN */
- i__4 = *ku + ml - 2, i__5 = *n - i__;
- i__3 = f2cmin(i__4,i__5);
- i__6 = *ldab - 1;
- i__7 = *ldab - 1;
- crot_(&i__3, &ab[*ku + ml - 2 + (i__ + 1) *
- ab_dim1], &i__6, &ab[*ku + ml - 1 + (i__
- + 1) * ab_dim1], &i__7, &rwork[i__ + ml -
- 1], &work[i__ + ml - 1]);
- }
- }
- ++nr;
- j1 -= kb1;
- }
-
- if (wantq) {
-
- /* accumulate product of plane rotations in Q */
-
- i__3 = j2;
- i__4 = kb1;
- for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4)
- {
- r_cnjg(&q__1, &work[j]);
- crot_(m, &q[(j - 1) * q_dim1 + 1], &c__1, &q[j *
- q_dim1 + 1], &c__1, &rwork[j], &q__1);
- /* L20: */
- }
- }
-
- if (wantc) {
-
- /* apply plane rotations to C */
-
- i__4 = j2;
- i__3 = kb1;
- for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3)
- {
- crot_(ncc, &c__[j - 1 + c_dim1], ldc, &c__[j + c_dim1]
- , ldc, &rwork[j], &work[j]);
- /* L30: */
- }
- }
-
- if (j2 + kun > *n) {
-
- /* adjust J2 to keep within the bounds of the matrix */
-
- --nr;
- j2 -= kb1;
- }
-
- i__3 = j2;
- i__4 = kb1;
- for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) {
-
- /* create nonzero element a(j-1,j+ku) above the band */
- /* and store it in WORK(n+1:2*n) */
-
- i__5 = j + kun;
- i__6 = j;
- i__7 = (j + kun) * ab_dim1 + 1;
- q__1.r = work[i__6].r * ab[i__7].r - work[i__6].i * ab[
- i__7].i, q__1.i = work[i__6].r * ab[i__7].i +
- work[i__6].i * ab[i__7].r;
- work[i__5].r = q__1.r, work[i__5].i = q__1.i;
- i__5 = (j + kun) * ab_dim1 + 1;
- i__6 = j;
- i__7 = (j + kun) * ab_dim1 + 1;
- q__1.r = rwork[i__6] * ab[i__7].r, q__1.i = rwork[i__6] *
- ab[i__7].i;
- ab[i__5].r = q__1.r, ab[i__5].i = q__1.i;
- /* L40: */
- }
-
- /* generate plane rotations to annihilate nonzero elements */
- /* which have been generated above the band */
-
- if (nr > 0) {
- clargv_(&nr, &ab[(j1 + kun - 1) * ab_dim1 + 1], &inca, &
- work[j1 + kun], &kb1, &rwork[j1 + kun], &kb1);
- }
-
- /* apply plane rotations from the right */
-
- i__4 = kb;
- for (l = 1; l <= i__4; ++l) {
- if (j2 + l - 1 > *m) {
- nrt = nr - 1;
- } else {
- nrt = nr;
- }
- if (nrt > 0) {
- clartv_(&nrt, &ab[l + 1 + (j1 + kun - 1) * ab_dim1], &
- inca, &ab[l + (j1 + kun) * ab_dim1], &inca, &
- rwork[j1 + kun], &work[j1 + kun], &kb1);
- }
- /* L50: */
- }
-
- if (ml == ml0 && mu > mu0) {
- if (mu <= *n - i__ + 1) {
-
- /* generate plane rotation to annihilate a(i,i+mu-1) */
- /* within the band, and apply rotation from the right */
-
- clartg_(&ab[*ku - mu + 3 + (i__ + mu - 2) * ab_dim1],
- &ab[*ku - mu + 2 + (i__ + mu - 1) * ab_dim1],
- &rwork[i__ + mu - 1], &work[i__ + mu - 1], &
- ra);
- i__4 = *ku - mu + 3 + (i__ + mu - 2) * ab_dim1;
- ab[i__4].r = ra.r, ab[i__4].i = ra.i;
- /* Computing MIN */
- i__3 = *kl + mu - 2, i__5 = *m - i__;
- i__4 = f2cmin(i__3,i__5);
- crot_(&i__4, &ab[*ku - mu + 4 + (i__ + mu - 2) *
- ab_dim1], &c__1, &ab[*ku - mu + 3 + (i__ + mu
- - 1) * ab_dim1], &c__1, &rwork[i__ + mu - 1],
- &work[i__ + mu - 1]);
- }
- ++nr;
- j1 -= kb1;
- }
-
- if (wantpt) {
-
- /* accumulate product of plane rotations in P**H */
-
- i__4 = j2;
- i__3 = kb1;
- for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3)
- {
- r_cnjg(&q__1, &work[j + kun]);
- crot_(n, &pt[j + kun - 1 + pt_dim1], ldpt, &pt[j +
- kun + pt_dim1], ldpt, &rwork[j + kun], &q__1);
- /* L60: */
- }
- }
-
- if (j2 + kb > *m) {
-
- /* adjust J2 to keep within the bounds of the matrix */
-
- --nr;
- j2 -= kb1;
- }
-
- i__3 = j2;
- i__4 = kb1;
- for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) {
-
- /* create nonzero element a(j+kl+ku,j+ku-1) below the */
- /* band and store it in WORK(1:n) */
-
- i__5 = j + kb;
- i__6 = j + kun;
- i__7 = klu1 + (j + kun) * ab_dim1;
- q__1.r = work[i__6].r * ab[i__7].r - work[i__6].i * ab[
- i__7].i, q__1.i = work[i__6].r * ab[i__7].i +
- work[i__6].i * ab[i__7].r;
- work[i__5].r = q__1.r, work[i__5].i = q__1.i;
- i__5 = klu1 + (j + kun) * ab_dim1;
- i__6 = j + kun;
- i__7 = klu1 + (j + kun) * ab_dim1;
- q__1.r = rwork[i__6] * ab[i__7].r, q__1.i = rwork[i__6] *
- ab[i__7].i;
- ab[i__5].r = q__1.r, ab[i__5].i = q__1.i;
- /* L70: */
- }
-
- if (ml > ml0) {
- --ml;
- } else {
- --mu;
- }
- /* L80: */
- }
- /* L90: */
- }
- }
-
- if (*ku == 0 && *kl > 0) {
-
- /* A has been reduced to complex lower bidiagonal form */
-
- /* Transform lower bidiagonal form to upper bidiagonal by applying */
- /* plane rotations from the left, overwriting superdiagonal */
- /* elements on subdiagonal elements */
-
- /* Computing MIN */
- i__2 = *m - 1;
- i__1 = f2cmin(i__2,*n);
- for (i__ = 1; i__ <= i__1; ++i__) {
- clartg_(&ab[i__ * ab_dim1 + 1], &ab[i__ * ab_dim1 + 2], &rc, &rs,
- &ra);
- i__2 = i__ * ab_dim1 + 1;
- ab[i__2].r = ra.r, ab[i__2].i = ra.i;
- if (i__ < *n) {
- i__2 = i__ * ab_dim1 + 2;
- i__4 = (i__ + 1) * ab_dim1 + 1;
- q__1.r = rs.r * ab[i__4].r - rs.i * ab[i__4].i, q__1.i = rs.r
- * ab[i__4].i + rs.i * ab[i__4].r;
- ab[i__2].r = q__1.r, ab[i__2].i = q__1.i;
- i__2 = (i__ + 1) * ab_dim1 + 1;
- i__4 = (i__ + 1) * ab_dim1 + 1;
- q__1.r = rc * ab[i__4].r, q__1.i = rc * ab[i__4].i;
- ab[i__2].r = q__1.r, ab[i__2].i = q__1.i;
- }
- if (wantq) {
- r_cnjg(&q__1, &rs);
- crot_(m, &q[i__ * q_dim1 + 1], &c__1, &q[(i__ + 1) * q_dim1 +
- 1], &c__1, &rc, &q__1);
- }
- if (wantc) {
- crot_(ncc, &c__[i__ + c_dim1], ldc, &c__[i__ + 1 + c_dim1],
- ldc, &rc, &rs);
- }
- /* L100: */
- }
- } else {
-
- /* A has been reduced to complex upper bidiagonal form or is */
- /* diagonal */
-
- if (*ku > 0 && *m < *n) {
-
- /* Annihilate a(m,m+1) by applying plane rotations from the */
- /* right */
-
- i__1 = *ku + (*m + 1) * ab_dim1;
- rb.r = ab[i__1].r, rb.i = ab[i__1].i;
- for (i__ = *m; i__ >= 1; --i__) {
- clartg_(&ab[*ku + 1 + i__ * ab_dim1], &rb, &rc, &rs, &ra);
- i__1 = *ku + 1 + i__ * ab_dim1;
- ab[i__1].r = ra.r, ab[i__1].i = ra.i;
- if (i__ > 1) {
- r_cnjg(&q__3, &rs);
- q__2.r = -q__3.r, q__2.i = -q__3.i;
- i__1 = *ku + i__ * ab_dim1;
- q__1.r = q__2.r * ab[i__1].r - q__2.i * ab[i__1].i,
- q__1.i = q__2.r * ab[i__1].i + q__2.i * ab[i__1]
- .r;
- rb.r = q__1.r, rb.i = q__1.i;
- i__1 = *ku + i__ * ab_dim1;
- i__2 = *ku + i__ * ab_dim1;
- q__1.r = rc * ab[i__2].r, q__1.i = rc * ab[i__2].i;
- ab[i__1].r = q__1.r, ab[i__1].i = q__1.i;
- }
- if (wantpt) {
- r_cnjg(&q__1, &rs);
- crot_(n, &pt[i__ + pt_dim1], ldpt, &pt[*m + 1 + pt_dim1],
- ldpt, &rc, &q__1);
- }
- /* L110: */
- }
- }
- }
-
- /* Make diagonal and superdiagonal elements real, storing them in D */
- /* and E */
-
- i__1 = *ku + 1 + ab_dim1;
- t.r = ab[i__1].r, t.i = ab[i__1].i;
- i__1 = minmn;
- for (i__ = 1; i__ <= i__1; ++i__) {
- abst = c_abs(&t);
- d__[i__] = abst;
- if (abst != 0.f) {
- q__1.r = t.r / abst, q__1.i = t.i / abst;
- t.r = q__1.r, t.i = q__1.i;
- } else {
- t.r = 1.f, t.i = 0.f;
- }
- if (wantq) {
- cscal_(m, &t, &q[i__ * q_dim1 + 1], &c__1);
- }
- if (wantc) {
- r_cnjg(&q__1, &t);
- cscal_(ncc, &q__1, &c__[i__ + c_dim1], ldc);
- }
- if (i__ < minmn) {
- if (*ku == 0 && *kl == 0) {
- e[i__] = 0.f;
- i__2 = (i__ + 1) * ab_dim1 + 1;
- t.r = ab[i__2].r, t.i = ab[i__2].i;
- } else {
- if (*ku == 0) {
- i__2 = i__ * ab_dim1 + 2;
- r_cnjg(&q__2, &t);
- q__1.r = ab[i__2].r * q__2.r - ab[i__2].i * q__2.i,
- q__1.i = ab[i__2].r * q__2.i + ab[i__2].i *
- q__2.r;
- t.r = q__1.r, t.i = q__1.i;
- } else {
- i__2 = *ku + (i__ + 1) * ab_dim1;
- r_cnjg(&q__2, &t);
- q__1.r = ab[i__2].r * q__2.r - ab[i__2].i * q__2.i,
- q__1.i = ab[i__2].r * q__2.i + ab[i__2].i *
- q__2.r;
- t.r = q__1.r, t.i = q__1.i;
- }
- abst = c_abs(&t);
- e[i__] = abst;
- if (abst != 0.f) {
- q__1.r = t.r / abst, q__1.i = t.i / abst;
- t.r = q__1.r, t.i = q__1.i;
- } else {
- t.r = 1.f, t.i = 0.f;
- }
- if (wantpt) {
- cscal_(n, &t, &pt[i__ + 1 + pt_dim1], ldpt);
- }
- i__2 = *ku + 1 + (i__ + 1) * ab_dim1;
- r_cnjg(&q__2, &t);
- q__1.r = ab[i__2].r * q__2.r - ab[i__2].i * q__2.i, q__1.i =
- ab[i__2].r * q__2.i + ab[i__2].i * q__2.r;
- t.r = q__1.r, t.i = q__1.i;
- }
- }
- /* L120: */
- }
- return;
-
- /* End of CGBBRD */
-
- } /* cgbbrd_ */
|