|
- /***************************************************************************
- Copyright (c) 2020, The OpenBLAS Project
- All rights reserved.
- Redistribution and use in source and binary forms, with or without
- modification, are permitted provided that the following conditions are
- met:
- 1. Redistributions of source code must retain the above copyright
- notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in
- the documentation and/or other materials provided with the
- distribution.
- 3. Neither the name of the OpenBLAS project nor the names of
- its contributors may be used to endorse or promote products
- derived from this software without specific prior written permission.
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- ARE DISCLAIMED. IN NO EVENT SHALL THE OPENBLAS PROJECT OR CONTRIBUTORS BE
- LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
- SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
- CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
- OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
- USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *****************************************************************************/
-
- #include "common.h"
-
- #if !defined(DOUBLE)
- #define VSETVL(n) RISCV_RVV(vsetvl_e32m4)(n)
- #define FLOAT_V_T vfloat32m4_t
- #define VLSEV_FLOAT RISCV_RVV(vlse32_v_f32m4)
- #define VSSEV_FLOAT RISCV_RVV(vsse32_v_f32m4)
- #define VFMACCVF_FLOAT RISCV_RVV(vfmacc_vf_f32m4)
- #define VFMVVF_FLOAT RISCV_RVV(vfmv_v_f_f32m4)
- #define VFMULVF_FLOAT RISCV_RVV(vfmul_vf_f32m4)
- #define VFMSACVF_FLOAT RISCV_RVV(vfmsac_vf_f32m4)
- #define VFNMSACVF_FLOAT RISCV_RVV(vfnmsac_vf_f32m4)
- #else
- #define VSETVL(n) RISCV_RVV(vsetvl_e64m4)(n)
- #define FLOAT_V_T vfloat64m4_t
- #define VLSEV_FLOAT RISCV_RVV(vlse64_v_f64m4)
- #define VSSEV_FLOAT RISCV_RVV(vsse64_v_f64m4)
- #define VFMACCVF_FLOAT RISCV_RVV(vfmacc_vf_f64m4)
- #define VFMVVF_FLOAT RISCV_RVV(vfmv_v_f_f64m4)
- #define VFMULVF_FLOAT RISCV_RVV(vfmul_vf_f64m4)
- #define VFMSACVF_FLOAT RISCV_RVV(vfmsac_vf_f64m4)
- #define VFNMSACVF_FLOAT RISCV_RVV(vfnmsac_vf_f64m4)
- #endif
-
- int CNAME(BLASLONG n, FLOAT alpha_r, FLOAT alpha_i, FLOAT *x, BLASLONG inc_x, FLOAT beta_r, FLOAT beta_i, FLOAT *y, BLASLONG inc_y)
- {
- if (n <= 0) return(0);
-
- BLASLONG i=0, j=0;
- unsigned int gvl = 0;
- FLOAT_V_T vx0, vx1;
- FLOAT_V_T vy0, vy1;
-
- BLASLONG stride_x, stride_y, ix = 0, iy = 0;
- stride_x = inc_x * 2 * sizeof(FLOAT);
- stride_y = inc_y * 2 * sizeof(FLOAT);
-
- if (inc_x == 0 || inc_y == 0) {
-
- FLOAT temp;
- BLASLONG inc_x2, inc_y2;
-
- inc_x2 = 2 * inc_x;
- inc_y2 = 2 * inc_y;
-
- if ( beta_r == 0.0 && beta_i == 0.0)
- {
- if ( alpha_r == 0.0 && alpha_i == 0.0 )
- {
-
- while(i < n)
- {
- y[iy] = 0.0 ;
- y[iy+1] = 0.0 ;
- iy += inc_y2 ;
- i++ ;
- }
-
- }
- else
- {
-
- while(i < n)
- {
- y[iy] = ( alpha_r * x[ix] - alpha_i * x[ix+1] ) ;
- y[iy+1] = ( alpha_r * x[ix+1] + alpha_i * x[ix] ) ;
- ix += inc_x2 ;
- iy += inc_y2 ;
- i++ ;
- }
-
-
- }
-
- }
- else
- {
- if ( alpha_r == 0.0 && alpha_i == 0.0 )
- {
-
- while(i < n)
- {
- temp = ( beta_r * y[iy] - beta_i * y[iy+1] ) ;
- y[iy+1] = ( beta_r * y[iy+1] + beta_i * y[iy] ) ;
- y[iy] = temp;
- iy += inc_y2 ;
- i++ ;
- }
-
- }
- else
- {
-
- while(i < n)
- {
- temp = ( alpha_r * x[ix] - alpha_i * x[ix+1] ) + ( beta_r * y[iy] - beta_i * y[iy+1] ) ;
- y[iy+1] = ( alpha_r * x[ix+1] + alpha_i * x[ix] ) + ( beta_r * y[iy+1] + beta_i * y[iy] ) ;
- y[iy] = temp;
- ix += inc_x2 ;
- iy += inc_y2 ;
- i++ ;
- }
-
-
- }
-
-
-
- }
- return(0);
-
- } else {
-
- if(beta_r == 0.0 && beta_i == 0.0){
- if(alpha_r == 0.0 && alpha_i == 0.0){
- if(inc_y == 1){
- memset(&y[0], 0, 2 * n * sizeof(FLOAT));
- }else{
- gvl = VSETVL(n);
- if(gvl <= n/2){
- vy0 = VFMVVF_FLOAT(0.0, gvl);
- BLASLONG inc_yv = inc_y * gvl * 2;
- for(i=0,j=0;i<n/(gvl*2);i++){
- VSSEV_FLOAT(&y[iy], stride_y, vy0, gvl);
- VSSEV_FLOAT(&y[iy+1], stride_y, vy0, gvl);
- VSSEV_FLOAT(&y[iy+inc_yv], stride_y, vy0, gvl);
- VSSEV_FLOAT(&y[iy+1+inc_yv], stride_y, vy0, gvl);
- j += gvl * 2;
- iy += inc_yv * 2;
- }
- }
- for(;j<n;){
- gvl = VSETVL(n-j);
- vy0 = VFMVVF_FLOAT(0.0, gvl);
- VSSEV_FLOAT(&y[iy], stride_y, vy0, gvl);
- VSSEV_FLOAT(&y[iy+1], stride_y, vy0, gvl);
- j += gvl;
- iy += inc_y * gvl * 2;
- }
- }
- }else{
- gvl = VSETVL(n);
- BLASLONG inc_xv = inc_x * gvl * 2;
- BLASLONG inc_yv = inc_y * gvl * 2;
- for(i=0,j=0; i<n/gvl; i++){
- vx0 = VLSEV_FLOAT(&x[ix], stride_x, gvl);
- vx1 = VLSEV_FLOAT(&x[ix+1], stride_x, gvl);
- vy0 = VFMULVF_FLOAT(vx1, alpha_i, gvl);
- vy0 = VFMSACVF_FLOAT(vy0, alpha_r, vx0, gvl);
- VSSEV_FLOAT(&y[iy], stride_y, vy0, gvl);
- vy1 = VFMULVF_FLOAT(vx1, alpha_r, gvl);
- vy1 = VFMACCVF_FLOAT(vy1, alpha_i, vx0, gvl);
- VSSEV_FLOAT(&y[iy+1], stride_y, vy1, gvl);
-
- j += gvl;
- ix += inc_xv;
- iy += inc_yv;
- }
- if(j<n){
- gvl = VSETVL(n-j);
- vx0 = VLSEV_FLOAT(&x[ix], stride_x, gvl);
- vx1 = VLSEV_FLOAT(&x[ix+1], stride_x, gvl);
- vy0 = VFMULVF_FLOAT(vx1, alpha_i, gvl);
- vy0 = VFMSACVF_FLOAT(vy0, alpha_r, vx0, gvl);
- VSSEV_FLOAT(&y[iy], stride_y, vy0, gvl);
- vy1 = VFMULVF_FLOAT(vx1, alpha_r, gvl);
- vy1 = VFMACCVF_FLOAT(vy1, alpha_i, vx0, gvl);
- VSSEV_FLOAT(&y[iy+1], stride_y, vy1, gvl);
- }
- }
- }else{
- FLOAT_V_T v0, v1;
- if(alpha_r == 0.0 && alpha_i == 0.0){
- gvl = VSETVL(n);
- BLASLONG inc_yv = inc_y * gvl * 2;
- for(i=0,j=0;i<n/gvl;i++){
- vy0 = VLSEV_FLOAT(&y[iy], stride_y, gvl);
- vy1 = VLSEV_FLOAT(&y[iy+1], stride_y, gvl);
- v0 = VFMULVF_FLOAT(vy1, beta_i, gvl);
- v0 = VFMSACVF_FLOAT(v0, beta_r, vy0, gvl);
- VSSEV_FLOAT(&y[iy], stride_y, v0, gvl);
- v1 = VFMULVF_FLOAT(vy1, beta_r, gvl);
- v1 = VFMACCVF_FLOAT(v1, beta_i, vy0, gvl);
- VSSEV_FLOAT(&y[iy+1], stride_y, v1, gvl);
- j += gvl;
- iy += inc_yv;
- }
- if(j<n){
- gvl = VSETVL(n-j);
- vy0 = VLSEV_FLOAT(&y[iy], stride_y, gvl);
- vy1 = VLSEV_FLOAT(&y[iy+1], stride_y, gvl);
- v0 = VFMULVF_FLOAT(vy1, beta_i, gvl);
- v0 = VFMSACVF_FLOAT(v0, beta_r, vy0, gvl);
- VSSEV_FLOAT(&y[iy], stride_y, v0, gvl);
- v1 = VFMULVF_FLOAT(vy1, beta_r, gvl);
- v1 = VFMACCVF_FLOAT(v1, beta_i, vy0, gvl);
- VSSEV_FLOAT(&y[iy+1], stride_y, v1, gvl);
- }
- }else{
- gvl = VSETVL(n);
- BLASLONG inc_xv = inc_x * gvl * 2;
- BLASLONG inc_yv = inc_y * gvl * 2;
- for(i=0,j=0; i<n/gvl; i++){
- vx0 = VLSEV_FLOAT(&x[ix], stride_x, gvl);
- vx1 = VLSEV_FLOAT(&x[ix+1], stride_x, gvl);
- vy0 = VLSEV_FLOAT(&y[iy], stride_y, gvl);
- vy1 = VLSEV_FLOAT(&y[iy+1], stride_y, gvl);
- v0 = VFMULVF_FLOAT(vx0, alpha_r, gvl);
- v0 = VFNMSACVF_FLOAT(v0, alpha_i, vx1, gvl);
- v0 = VFMACCVF_FLOAT(v0, beta_r, vy0, gvl);
- v0 = VFNMSACVF_FLOAT(v0, beta_i, vy1, gvl);
- VSSEV_FLOAT(&y[iy], stride_y, v0, gvl);
- v1 = VFMULVF_FLOAT(vx1, alpha_r, gvl);
- v1 = VFMACCVF_FLOAT(v1, alpha_i, vx0, gvl);
- v1 = VFMACCVF_FLOAT(v1, beta_r, vy1, gvl);
- v1 = VFMACCVF_FLOAT(v1, beta_i, vy0, gvl);
- VSSEV_FLOAT(&y[iy+1], stride_y, v1, gvl);
-
- j += gvl;
- ix += inc_xv;
- iy += inc_yv;
- }
- if(j<n){
- gvl = VSETVL(n-j);
- vx0 = VLSEV_FLOAT(&x[ix], stride_x, gvl);
- vx1 = VLSEV_FLOAT(&x[ix+1], stride_x, gvl);
- vy0 = VLSEV_FLOAT(&y[iy], stride_y, gvl);
- vy1 = VLSEV_FLOAT(&y[iy+1], stride_y, gvl);
- v0 = VFMULVF_FLOAT(vx0, alpha_r, gvl);
- v0 = VFNMSACVF_FLOAT(v0, alpha_i, vx1, gvl);
- v0 = VFMACCVF_FLOAT(v0, beta_r, vy0, gvl);
- v0 = VFNMSACVF_FLOAT(v0, beta_i, vy1, gvl);
- VSSEV_FLOAT(&y[iy], stride_y, v0, gvl);
- v1 = VFMULVF_FLOAT(vx1, alpha_r, gvl);
- v1 = VFMACCVF_FLOAT(v1, alpha_i, vx0, gvl);
- v1 = VFMACCVF_FLOAT(v1, beta_r, vy1, gvl);
- v1 = VFMACCVF_FLOAT(v1, beta_i, vy0, gvl);
- VSSEV_FLOAT(&y[iy+1], stride_y, v1, gvl);
- }
- }
- }
- return(0);
- }
- }
|