|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef blasint logical;
-
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle_() continue;
- #define myceiling_(w) {ceil(w)}
- #define myhuge_(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc_(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
-
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static integer c__1 = 1;
- static doublereal c_b18 = .001;
-
- /* > \brief \b ZSTEMR */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download ZSTEMR + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zstemr.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zstemr.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zstemr.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE ZSTEMR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU, */
- /* M, W, Z, LDZ, NZC, ISUPPZ, TRYRAC, WORK, LWORK, */
- /* IWORK, LIWORK, INFO ) */
-
- /* CHARACTER JOBZ, RANGE */
- /* LOGICAL TRYRAC */
- /* INTEGER IL, INFO, IU, LDZ, NZC, LIWORK, LWORK, M, N */
- /* DOUBLE PRECISION VL, VU */
- /* INTEGER ISUPPZ( * ), IWORK( * ) */
- /* DOUBLE PRECISION D( * ), E( * ), W( * ), WORK( * ) */
- /* COMPLEX*16 Z( LDZ, * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > ZSTEMR computes selected eigenvalues and, optionally, eigenvectors */
- /* > of a real symmetric tridiagonal matrix T. Any such unreduced matrix has */
- /* > a well defined set of pairwise different real eigenvalues, the corresponding */
- /* > real eigenvectors are pairwise orthogonal. */
- /* > */
- /* > The spectrum may be computed either completely or partially by specifying */
- /* > either an interval (VL,VU] or a range of indices IL:IU for the desired */
- /* > eigenvalues. */
- /* > */
- /* > Depending on the number of desired eigenvalues, these are computed either */
- /* > by bisection or the dqds algorithm. Numerically orthogonal eigenvectors are */
- /* > computed by the use of various suitable L D L^T factorizations near clusters */
- /* > of close eigenvalues (referred to as RRRs, Relatively Robust */
- /* > Representations). An informal sketch of the algorithm follows. */
- /* > */
- /* > For each unreduced block (submatrix) of T, */
- /* > (a) Compute T - sigma I = L D L^T, so that L and D */
- /* > define all the wanted eigenvalues to high relative accuracy. */
- /* > This means that small relative changes in the entries of D and L */
- /* > cause only small relative changes in the eigenvalues and */
- /* > eigenvectors. The standard (unfactored) representation of the */
- /* > tridiagonal matrix T does not have this property in general. */
- /* > (b) Compute the eigenvalues to suitable accuracy. */
- /* > If the eigenvectors are desired, the algorithm attains full */
- /* > accuracy of the computed eigenvalues only right before */
- /* > the corresponding vectors have to be computed, see steps c) and d). */
- /* > (c) For each cluster of close eigenvalues, select a new */
- /* > shift close to the cluster, find a new factorization, and refine */
- /* > the shifted eigenvalues to suitable accuracy. */
- /* > (d) For each eigenvalue with a large enough relative separation compute */
- /* > the corresponding eigenvector by forming a rank revealing twisted */
- /* > factorization. Go back to (c) for any clusters that remain. */
- /* > */
- /* > For more details, see: */
- /* > - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations */
- /* > to compute orthogonal eigenvectors of symmetric tridiagonal matrices," */
- /* > Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004. */
- /* > - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and */
- /* > Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25, */
- /* > 2004. Also LAPACK Working Note 154. */
- /* > - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric */
- /* > tridiagonal eigenvalue/eigenvector problem", */
- /* > Computer Science Division Technical Report No. UCB/CSD-97-971, */
- /* > UC Berkeley, May 1997. */
- /* > */
- /* > Further Details */
- /* > 1.ZSTEMR works only on machines which follow IEEE-754 */
- /* > floating-point standard in their handling of infinities and NaNs. */
- /* > This permits the use of efficient inner loops avoiding a check for */
- /* > zero divisors. */
- /* > */
- /* > 2. LAPACK routines can be used to reduce a complex Hermitean matrix to */
- /* > real symmetric tridiagonal form. */
- /* > */
- /* > (Any complex Hermitean tridiagonal matrix has real values on its diagonal */
- /* > and potentially complex numbers on its off-diagonals. By applying a */
- /* > similarity transform with an appropriate diagonal matrix */
- /* > diag(1,e^{i \phy_1}, ... , e^{i \phy_{n-1}}), the complex Hermitean */
- /* > matrix can be transformed into a real symmetric matrix and complex */
- /* > arithmetic can be entirely avoided.) */
- /* > */
- /* > While the eigenvectors of the real symmetric tridiagonal matrix are real, */
- /* > the eigenvectors of original complex Hermitean matrix have complex entries */
- /* > in general. */
- /* > Since LAPACK drivers overwrite the matrix data with the eigenvectors, */
- /* > ZSTEMR accepts complex workspace to facilitate interoperability */
- /* > with ZUNMTR or ZUPMTR. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] JOBZ */
- /* > \verbatim */
- /* > JOBZ is CHARACTER*1 */
- /* > = 'N': Compute eigenvalues only; */
- /* > = 'V': Compute eigenvalues and eigenvectors. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] RANGE */
- /* > \verbatim */
- /* > RANGE is CHARACTER*1 */
- /* > = 'A': all eigenvalues will be found. */
- /* > = 'V': all eigenvalues in the half-open interval (VL,VU] */
- /* > will be found. */
- /* > = 'I': the IL-th through IU-th eigenvalues will be found. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The order of the matrix. N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] D */
- /* > \verbatim */
- /* > D is DOUBLE PRECISION array, dimension (N) */
- /* > On entry, the N diagonal elements of the tridiagonal matrix */
- /* > T. On exit, D is overwritten. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] E */
- /* > \verbatim */
- /* > E is DOUBLE PRECISION array, dimension (N) */
- /* > On entry, the (N-1) subdiagonal elements of the tridiagonal */
- /* > matrix T in elements 1 to N-1 of E. E(N) need not be set on */
- /* > input, but is used internally as workspace. */
- /* > On exit, E is overwritten. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] VL */
- /* > \verbatim */
- /* > VL is DOUBLE PRECISION */
- /* > */
- /* > If RANGE='V', the lower bound of the interval to */
- /* > be searched for eigenvalues. VL < VU. */
- /* > Not referenced if RANGE = 'A' or 'I'. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] VU */
- /* > \verbatim */
- /* > VU is DOUBLE PRECISION */
- /* > */
- /* > If RANGE='V', the upper bound of the interval to */
- /* > be searched for eigenvalues. VL < VU. */
- /* > Not referenced if RANGE = 'A' or 'I'. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] IL */
- /* > \verbatim */
- /* > IL is INTEGER */
- /* > */
- /* > If RANGE='I', the index of the */
- /* > smallest eigenvalue to be returned. */
- /* > 1 <= IL <= IU <= N, if N > 0. */
- /* > Not referenced if RANGE = 'A' or 'V'. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] IU */
- /* > \verbatim */
- /* > IU is INTEGER */
- /* > */
- /* > If RANGE='I', the index of the */
- /* > largest eigenvalue to be returned. */
- /* > 1 <= IL <= IU <= N, if N > 0. */
- /* > Not referenced if RANGE = 'A' or 'V'. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] M */
- /* > \verbatim */
- /* > M is INTEGER */
- /* > The total number of eigenvalues found. 0 <= M <= N. */
- /* > If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] W */
- /* > \verbatim */
- /* > W is DOUBLE PRECISION array, dimension (N) */
- /* > The first M elements contain the selected eigenvalues in */
- /* > ascending order. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] Z */
- /* > \verbatim */
- /* > Z is COMPLEX*16 array, dimension (LDZ, f2cmax(1,M) ) */
- /* > If JOBZ = 'V', and if INFO = 0, then the first M columns of Z */
- /* > contain the orthonormal eigenvectors of the matrix T */
- /* > corresponding to the selected eigenvalues, with the i-th */
- /* > column of Z holding the eigenvector associated with W(i). */
- /* > If JOBZ = 'N', then Z is not referenced. */
- /* > Note: the user must ensure that at least f2cmax(1,M) columns are */
- /* > supplied in the array Z; if RANGE = 'V', the exact value of M */
- /* > is not known in advance and can be computed with a workspace */
- /* > query by setting NZC = -1, see below. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDZ */
- /* > \verbatim */
- /* > LDZ is INTEGER */
- /* > The leading dimension of the array Z. LDZ >= 1, and if */
- /* > JOBZ = 'V', then LDZ >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] NZC */
- /* > \verbatim */
- /* > NZC is INTEGER */
- /* > The number of eigenvectors to be held in the array Z. */
- /* > If RANGE = 'A', then NZC >= f2cmax(1,N). */
- /* > If RANGE = 'V', then NZC >= the number of eigenvalues in (VL,VU]. */
- /* > If RANGE = 'I', then NZC >= IU-IL+1. */
- /* > If NZC = -1, then a workspace query is assumed; the */
- /* > routine calculates the number of columns of the array Z that */
- /* > are needed to hold the eigenvectors. */
- /* > This value is returned as the first entry of the Z array, and */
- /* > no error message related to NZC is issued by XERBLA. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] ISUPPZ */
- /* > \verbatim */
- /* > ISUPPZ is INTEGER array, dimension ( 2*f2cmax(1,M) ) */
- /* > The support of the eigenvectors in Z, i.e., the indices */
- /* > indicating the nonzero elements in Z. The i-th computed eigenvector */
- /* > is nonzero only in elements ISUPPZ( 2*i-1 ) through */
- /* > ISUPPZ( 2*i ). This is relevant in the case when the matrix */
- /* > is split. ISUPPZ is only accessed when JOBZ is 'V' and N > 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] TRYRAC */
- /* > \verbatim */
- /* > TRYRAC is LOGICAL */
- /* > If TRYRAC = .TRUE., indicates that the code should check whether */
- /* > the tridiagonal matrix defines its eigenvalues to high relative */
- /* > accuracy. If so, the code uses relative-accuracy preserving */
- /* > algorithms that might be (a bit) slower depending on the matrix. */
- /* > If the matrix does not define its eigenvalues to high relative */
- /* > accuracy, the code can uses possibly faster algorithms. */
- /* > If TRYRAC = .FALSE., the code is not required to guarantee */
- /* > relatively accurate eigenvalues and can use the fastest possible */
- /* > techniques. */
- /* > On exit, a .TRUE. TRYRAC will be set to .FALSE. if the matrix */
- /* > does not define its eigenvalues to high relative accuracy. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > WORK is DOUBLE PRECISION array, dimension (LWORK) */
- /* > On exit, if INFO = 0, WORK(1) returns the optimal */
- /* > (and minimal) LWORK. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LWORK */
- /* > \verbatim */
- /* > LWORK is INTEGER */
- /* > The dimension of the array WORK. LWORK >= f2cmax(1,18*N) */
- /* > if JOBZ = 'V', and LWORK >= f2cmax(1,12*N) if JOBZ = 'N'. */
- /* > If LWORK = -1, then a workspace query is assumed; the routine */
- /* > only calculates the optimal size of the WORK array, returns */
- /* > this value as the first entry of the WORK array, and no error */
- /* > message related to LWORK is issued by XERBLA. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] IWORK */
- /* > \verbatim */
- /* > IWORK is INTEGER array, dimension (LIWORK) */
- /* > On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LIWORK */
- /* > \verbatim */
- /* > LIWORK is INTEGER */
- /* > The dimension of the array IWORK. LIWORK >= f2cmax(1,10*N) */
- /* > if the eigenvectors are desired, and LIWORK >= f2cmax(1,8*N) */
- /* > if only the eigenvalues are to be computed. */
- /* > If LIWORK = -1, then a workspace query is assumed; the */
- /* > routine only calculates the optimal size of the IWORK array, */
- /* > returns this value as the first entry of the IWORK array, and */
- /* > no error message related to LIWORK is issued by XERBLA. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > On exit, INFO */
- /* > = 0: successful exit */
- /* > < 0: if INFO = -i, the i-th argument had an illegal value */
- /* > > 0: if INFO = 1X, internal error in DLARRE, */
- /* > if INFO = 2X, internal error in ZLARRV. */
- /* > Here, the digit X = ABS( IINFO ) < 10, where IINFO is */
- /* > the nonzero error code returned by DLARRE or */
- /* > ZLARRV, respectively. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date June 2016 */
-
- /* > \ingroup complex16OTHERcomputational */
-
- /* > \par Contributors: */
- /* ================== */
- /* > */
- /* > Beresford Parlett, University of California, Berkeley, USA \n */
- /* > Jim Demmel, University of California, Berkeley, USA \n */
- /* > Inderjit Dhillon, University of Texas, Austin, USA \n */
- /* > Osni Marques, LBNL/NERSC, USA \n */
- /* > Christof Voemel, University of California, Berkeley, USA \n */
-
- /* ===================================================================== */
- /* Subroutine */ void zstemr_(char *jobz, char *range, integer *n, doublereal *
- d__, doublereal *e, doublereal *vl, doublereal *vu, integer *il,
- integer *iu, integer *m, doublereal *w, doublecomplex *z__, integer *
- ldz, integer *nzc, integer *isuppz, logical *tryrac, doublereal *work,
- integer *lwork, integer *iwork, integer *liwork, integer *info)
- {
- /* System generated locals */
- integer z_dim1, z_offset, i__1, i__2;
- doublereal d__1, d__2;
-
- /* Local variables */
- integer indd, iend, jblk, wend;
- doublereal rmin, rmax;
- integer itmp;
- doublereal tnrm;
- extern /* Subroutine */ void dlae2_(doublereal *, doublereal *, doublereal
- *, doublereal *, doublereal *);
- integer inde2, itmp2;
- doublereal rtol1, rtol2;
- integer i__, j;
- extern /* Subroutine */ void dscal_(integer *, doublereal *, doublereal *,
- integer *);
- doublereal scale;
- integer indgp;
- extern logical lsame_(char *, char *);
- integer iinfo, iindw, ilast;
- extern /* Subroutine */ void dcopy_(integer *, doublereal *, integer *,
- doublereal *, integer *);
- integer lwmin;
- logical wantz;
- doublereal r1, r2;
- extern /* Subroutine */ void zswap_(integer *, doublecomplex *, integer *,
- doublecomplex *, integer *), dlaev2_(doublereal *, doublereal *,
- doublereal *, doublereal *, doublereal *, doublereal *,
- doublereal *);
- integer jj;
- doublereal cs;
- integer in;
- extern doublereal dlamch_(char *);
- logical alleig, indeig;
- integer ibegin, iindbl;
- doublereal sn, wl;
- logical valeig;
- extern /* Subroutine */ void dlarrc_(char *, integer *, doublereal *,
- doublereal *, doublereal *, doublereal *, doublereal *, integer *,
- integer *, integer *, integer *), dlarre_(char *,
- integer *, doublereal *, doublereal *, integer *, integer *,
- doublereal *, doublereal *, doublereal *, doublereal *,
- doublereal *, doublereal *, integer *, integer *, integer *,
- doublereal *, doublereal *, doublereal *, integer *, integer *,
- doublereal *, doublereal *, doublereal *, integer *, integer *);
- integer wbegin;
- doublereal safmin, wu;
- extern /* Subroutine */ void dlarrj_(integer *, doublereal *, doublereal *,
- integer *, integer *, doublereal *, integer *, doublereal *,
- doublereal *, doublereal *, integer *, doublereal *, doublereal *,
- integer *);
- extern int xerbla_(char *, integer *, ftnlen);
- doublereal bignum;
- integer inderr, iindwk, indgrs, offset;
- extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *);
- extern /* Subroutine */ void dlarrr_(integer *, doublereal *, doublereal *,
- integer *), dlasrt_(char *, integer *, doublereal *, integer *);
- doublereal thresh;
- integer iinspl, indwrk, ifirst, liwmin, nzcmin;
- doublereal pivmin;
- integer nsplit;
- doublereal smlnum;
- extern /* Subroutine */ void zlarrv_(integer *, doublereal *, doublereal *,
- doublereal *, doublereal *, doublereal *, integer *, integer *,
- integer *, integer *, doublereal *, doublereal *, doublereal *,
- doublereal *, doublereal *, doublereal *, integer *, integer *,
- doublereal *, doublecomplex *, integer *, integer *, doublereal *,
- integer *, integer *);
- logical lquery, zquery;
- integer iil, iiu;
- doublereal eps, tmp;
-
-
- /* -- LAPACK computational routine (version 3.7.1) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* June 2016 */
-
-
- /* ===================================================================== */
-
-
- /* Test the input parameters. */
-
- /* Parameter adjustments */
- --d__;
- --e;
- --w;
- z_dim1 = *ldz;
- z_offset = 1 + z_dim1 * 1;
- z__ -= z_offset;
- --isuppz;
- --work;
- --iwork;
-
- /* Function Body */
- wantz = lsame_(jobz, "V");
- alleig = lsame_(range, "A");
- valeig = lsame_(range, "V");
- indeig = lsame_(range, "I");
-
- lquery = *lwork == -1 || *liwork == -1;
- zquery = *nzc == -1;
- /* DSTEMR needs WORK of size 6*N, IWORK of size 3*N. */
- /* In addition, DLARRE needs WORK of size 6*N, IWORK of size 5*N. */
- /* Furthermore, ZLARRV needs WORK of size 12*N, IWORK of size 7*N. */
- if (wantz) {
- lwmin = *n * 18;
- liwmin = *n * 10;
- } else {
- /* need less workspace if only the eigenvalues are wanted */
- lwmin = *n * 12;
- liwmin = *n << 3;
- }
- wl = 0.;
- wu = 0.;
- iil = 0;
- iiu = 0;
- nsplit = 0;
- if (valeig) {
- /* We do not reference VL, VU in the cases RANGE = 'I','A' */
- /* The interval (WL, WU] contains all the wanted eigenvalues. */
- /* It is either given by the user or computed in DLARRE. */
- wl = *vl;
- wu = *vu;
- } else if (indeig) {
- /* We do not reference IL, IU in the cases RANGE = 'V','A' */
- iil = *il;
- iiu = *iu;
- }
-
- *info = 0;
- if (! (wantz || lsame_(jobz, "N"))) {
- *info = -1;
- } else if (! (alleig || valeig || indeig)) {
- *info = -2;
- } else if (*n < 0) {
- *info = -3;
- } else if (valeig && *n > 0 && wu <= wl) {
- *info = -7;
- } else if (indeig && (iil < 1 || iil > *n)) {
- *info = -8;
- } else if (indeig && (iiu < iil || iiu > *n)) {
- *info = -9;
- } else if (*ldz < 1 || wantz && *ldz < *n) {
- *info = -13;
- } else if (*lwork < lwmin && ! lquery) {
- *info = -17;
- } else if (*liwork < liwmin && ! lquery) {
- *info = -19;
- }
-
- /* Get machine constants. */
-
- safmin = dlamch_("Safe minimum");
- eps = dlamch_("Precision");
- smlnum = safmin / eps;
- bignum = 1. / smlnum;
- rmin = sqrt(smlnum);
- /* Computing MIN */
- d__1 = sqrt(bignum), d__2 = 1. / sqrt(sqrt(safmin));
- rmax = f2cmin(d__1,d__2);
-
- if (*info == 0) {
- work[1] = (doublereal) lwmin;
- iwork[1] = liwmin;
-
- if (wantz && alleig) {
- nzcmin = *n;
- } else if (wantz && valeig) {
- dlarrc_("T", n, vl, vu, &d__[1], &e[1], &safmin, &nzcmin, &itmp, &
- itmp2, info);
- } else if (wantz && indeig) {
- nzcmin = iiu - iil + 1;
- } else {
- /* WANTZ .EQ. FALSE. */
- nzcmin = 0;
- }
- if (zquery && *info == 0) {
- i__1 = z_dim1 + 1;
- z__[i__1].r = (doublereal) nzcmin, z__[i__1].i = 0.;
- } else if (*nzc < nzcmin && ! zquery) {
- *info = -14;
- }
- }
- if (*info != 0) {
-
- i__1 = -(*info);
- xerbla_("ZSTEMR", &i__1, (ftnlen)6);
-
- return;
- } else if (lquery || zquery) {
- return;
- }
-
- /* Handle N = 0, 1, and 2 cases immediately */
-
- *m = 0;
- if (*n == 0) {
- return;
- }
-
- if (*n == 1) {
- if (alleig || indeig) {
- *m = 1;
- w[1] = d__[1];
- } else {
- if (wl < d__[1] && wu >= d__[1]) {
- *m = 1;
- w[1] = d__[1];
- }
- }
- if (wantz && ! zquery) {
- i__1 = z_dim1 + 1;
- z__[i__1].r = 1., z__[i__1].i = 0.;
- isuppz[1] = 1;
- isuppz[2] = 1;
- }
- return;
- }
-
- if (*n == 2) {
- if (! wantz) {
- dlae2_(&d__[1], &e[1], &d__[2], &r1, &r2);
- } else if (wantz && ! zquery) {
- dlaev2_(&d__[1], &e[1], &d__[2], &r1, &r2, &cs, &sn);
- }
- if (alleig || valeig && r2 > wl && r2 <= wu || indeig && iil == 1) {
- ++(*m);
- w[*m] = r2;
- if (wantz && ! zquery) {
- i__1 = *m * z_dim1 + 1;
- d__1 = -sn;
- z__[i__1].r = d__1, z__[i__1].i = 0.;
- i__1 = *m * z_dim1 + 2;
- z__[i__1].r = cs, z__[i__1].i = 0.;
- /* Note: At most one of SN and CS can be zero. */
- if (sn != 0.) {
- if (cs != 0.) {
- isuppz[(*m << 1) - 1] = 1;
- isuppz[*m * 2] = 2;
- } else {
- isuppz[(*m << 1) - 1] = 1;
- isuppz[*m * 2] = 1;
- }
- } else {
- isuppz[(*m << 1) - 1] = 2;
- isuppz[*m * 2] = 2;
- }
- }
- }
- if (alleig || valeig && r1 > wl && r1 <= wu || indeig && iiu == 2) {
- ++(*m);
- w[*m] = r1;
- if (wantz && ! zquery) {
- i__1 = *m * z_dim1 + 1;
- z__[i__1].r = cs, z__[i__1].i = 0.;
- i__1 = *m * z_dim1 + 2;
- z__[i__1].r = sn, z__[i__1].i = 0.;
- /* Note: At most one of SN and CS can be zero. */
- if (sn != 0.) {
- if (cs != 0.) {
- isuppz[(*m << 1) - 1] = 1;
- isuppz[*m * 2] = 2;
- } else {
- isuppz[(*m << 1) - 1] = 1;
- isuppz[*m * 2] = 1;
- }
- } else {
- isuppz[(*m << 1) - 1] = 2;
- isuppz[*m * 2] = 2;
- }
- }
- }
- } else {
- /* Continue with general N */
- indgrs = 1;
- inderr = (*n << 1) + 1;
- indgp = *n * 3 + 1;
- indd = (*n << 2) + 1;
- inde2 = *n * 5 + 1;
- indwrk = *n * 6 + 1;
-
- iinspl = 1;
- iindbl = *n + 1;
- iindw = (*n << 1) + 1;
- iindwk = *n * 3 + 1;
-
- /* Scale matrix to allowable range, if necessary. */
- /* The allowable range is related to the PIVMIN parameter; see the */
- /* comments in DLARRD. The preference for scaling small values */
- /* up is heuristic; we expect users' matrices not to be close to the */
- /* RMAX threshold. */
-
- scale = 1.;
- tnrm = dlanst_("M", n, &d__[1], &e[1]);
- if (tnrm > 0. && tnrm < rmin) {
- scale = rmin / tnrm;
- } else if (tnrm > rmax) {
- scale = rmax / tnrm;
- }
- if (scale != 1.) {
- dscal_(n, &scale, &d__[1], &c__1);
- i__1 = *n - 1;
- dscal_(&i__1, &scale, &e[1], &c__1);
- tnrm *= scale;
- if (valeig) {
- /* If eigenvalues in interval have to be found, */
- /* scale (WL, WU] accordingly */
- wl *= scale;
- wu *= scale;
- }
- }
-
- /* Compute the desired eigenvalues of the tridiagonal after splitting */
- /* into smaller subblocks if the corresponding off-diagonal elements */
- /* are small */
- /* THRESH is the splitting parameter for DLARRE */
- /* A negative THRESH forces the old splitting criterion based on the */
- /* size of the off-diagonal. A positive THRESH switches to splitting */
- /* which preserves relative accuracy. */
-
- if (*tryrac) {
- /* Test whether the matrix warrants the more expensive relative approach. */
- dlarrr_(n, &d__[1], &e[1], &iinfo);
- } else {
- /* The user does not care about relative accurately eigenvalues */
- iinfo = -1;
- }
- /* Set the splitting criterion */
- if (iinfo == 0) {
- thresh = eps;
- } else {
- thresh = -eps;
- /* relative accuracy is desired but T does not guarantee it */
- *tryrac = FALSE_;
- }
-
- if (*tryrac) {
- /* Copy original diagonal, needed to guarantee relative accuracy */
- dcopy_(n, &d__[1], &c__1, &work[indd], &c__1);
- }
- /* Store the squares of the offdiagonal values of T */
- i__1 = *n - 1;
- for (j = 1; j <= i__1; ++j) {
- /* Computing 2nd power */
- d__1 = e[j];
- work[inde2 + j - 1] = d__1 * d__1;
- /* L5: */
- }
- /* Set the tolerance parameters for bisection */
- if (! wantz) {
- /* DLARRE computes the eigenvalues to full precision. */
- rtol1 = eps * 4.;
- rtol2 = eps * 4.;
- } else {
- /* DLARRE computes the eigenvalues to less than full precision. */
- /* ZLARRV will refine the eigenvalue approximations, and we only */
- /* need less accurate initial bisection in DLARRE. */
- /* Note: these settings do only affect the subset case and DLARRE */
- rtol1 = sqrt(eps);
- /* Computing MAX */
- d__1 = sqrt(eps) * .005, d__2 = eps * 4.;
- rtol2 = f2cmax(d__1,d__2);
- }
- dlarre_(range, n, &wl, &wu, &iil, &iiu, &d__[1], &e[1], &work[inde2],
- &rtol1, &rtol2, &thresh, &nsplit, &iwork[iinspl], m, &w[1], &
- work[inderr], &work[indgp], &iwork[iindbl], &iwork[iindw], &
- work[indgrs], &pivmin, &work[indwrk], &iwork[iindwk], &iinfo);
- if (iinfo != 0) {
- *info = abs(iinfo) + 10;
- return;
- }
- /* Note that if RANGE .NE. 'V', DLARRE computes bounds on the desired */
- /* part of the spectrum. All desired eigenvalues are contained in */
- /* (WL,WU] */
- if (wantz) {
-
- /* Compute the desired eigenvectors corresponding to the computed */
- /* eigenvalues */
-
- zlarrv_(n, &wl, &wu, &d__[1], &e[1], &pivmin, &iwork[iinspl], m, &
- c__1, m, &c_b18, &rtol1, &rtol2, &w[1], &work[inderr], &
- work[indgp], &iwork[iindbl], &iwork[iindw], &work[indgrs],
- &z__[z_offset], ldz, &isuppz[1], &work[indwrk], &iwork[
- iindwk], &iinfo);
- if (iinfo != 0) {
- *info = abs(iinfo) + 20;
- return;
- }
- } else {
- /* DLARRE computes eigenvalues of the (shifted) root representation */
- /* ZLARRV returns the eigenvalues of the unshifted matrix. */
- /* However, if the eigenvectors are not desired by the user, we need */
- /* to apply the corresponding shifts from DLARRE to obtain the */
- /* eigenvalues of the original matrix. */
- i__1 = *m;
- for (j = 1; j <= i__1; ++j) {
- itmp = iwork[iindbl + j - 1];
- w[j] += e[iwork[iinspl + itmp - 1]];
- /* L20: */
- }
- }
-
- if (*tryrac) {
- /* Refine computed eigenvalues so that they are relatively accurate */
- /* with respect to the original matrix T. */
- ibegin = 1;
- wbegin = 1;
- i__1 = iwork[iindbl + *m - 1];
- for (jblk = 1; jblk <= i__1; ++jblk) {
- iend = iwork[iinspl + jblk - 1];
- in = iend - ibegin + 1;
- wend = wbegin - 1;
- /* check if any eigenvalues have to be refined in this block */
- L36:
- if (wend < *m) {
- if (iwork[iindbl + wend] == jblk) {
- ++wend;
- goto L36;
- }
- }
- if (wend < wbegin) {
- ibegin = iend + 1;
- goto L39;
- }
- offset = iwork[iindw + wbegin - 1] - 1;
- ifirst = iwork[iindw + wbegin - 1];
- ilast = iwork[iindw + wend - 1];
- rtol2 = eps * 4.;
- dlarrj_(&in, &work[indd + ibegin - 1], &work[inde2 + ibegin -
- 1], &ifirst, &ilast, &rtol2, &offset, &w[wbegin], &
- work[inderr + wbegin - 1], &work[indwrk], &iwork[
- iindwk], &pivmin, &tnrm, &iinfo);
- ibegin = iend + 1;
- wbegin = wend + 1;
- L39:
- ;
- }
- }
-
- /* If matrix was scaled, then rescale eigenvalues appropriately. */
-
- if (scale != 1.) {
- d__1 = 1. / scale;
- dscal_(m, &d__1, &w[1], &c__1);
- }
- }
-
- /* If eigenvalues are not in increasing order, then sort them, */
- /* possibly along with eigenvectors. */
-
- if (nsplit > 1 || *n == 2) {
- if (! wantz) {
- dlasrt_("I", m, &w[1], &iinfo);
- if (iinfo != 0) {
- *info = 3;
- return;
- }
- } else {
- i__1 = *m - 1;
- for (j = 1; j <= i__1; ++j) {
- i__ = 0;
- tmp = w[j];
- i__2 = *m;
- for (jj = j + 1; jj <= i__2; ++jj) {
- if (w[jj] < tmp) {
- i__ = jj;
- tmp = w[jj];
- }
- /* L50: */
- }
- if (i__ != 0) {
- w[i__] = w[j];
- w[j] = tmp;
- if (wantz) {
- zswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j *
- z_dim1 + 1], &c__1);
- itmp = isuppz[(i__ << 1) - 1];
- isuppz[(i__ << 1) - 1] = isuppz[(j << 1) - 1];
- isuppz[(j << 1) - 1] = itmp;
- itmp = isuppz[i__ * 2];
- isuppz[i__ * 2] = isuppz[j * 2];
- isuppz[j * 2] = itmp;
- }
- }
- /* L60: */
- }
- }
- }
-
-
- work[1] = (doublereal) lwmin;
- iwork[1] = liwmin;
- return;
-
- /* End of ZSTEMR */
-
- } /* zstemr_ */
|