|
- SUBROUTINE DTBSVF(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX)
- * .. Scalar Arguments ..
- INTEGER INCX,K,LDA,N
- CHARACTER DIAG,TRANS,UPLO
- * ..
- * .. Array Arguments ..
- DOUBLE PRECISION A(LDA,*),X(*)
- * ..
- *
- * Purpose
- * =======
- *
- * DTBSV solves one of the systems of equations
- *
- * A*x = b, or A'*x = b,
- *
- * where b and x are n element vectors and A is an n by n unit, or
- * non-unit, upper or lower triangular band matrix, with ( k + 1 )
- * diagonals.
- *
- * No test for singularity or near-singularity is included in this
- * routine. Such tests must be performed before calling this routine.
- *
- * Arguments
- * ==========
- *
- * UPLO - CHARACTER*1.
- * On entry, UPLO specifies whether the matrix is an upper or
- * lower triangular matrix as follows:
- *
- * UPLO = 'U' or 'u' A is an upper triangular matrix.
- *
- * UPLO = 'L' or 'l' A is a lower triangular matrix.
- *
- * Unchanged on exit.
- *
- * TRANS - CHARACTER*1.
- * On entry, TRANS specifies the equations to be solved as
- * follows:
- *
- * TRANS = 'N' or 'n' A*x = b.
- *
- * TRANS = 'T' or 't' A'*x = b.
- *
- * TRANS = 'C' or 'c' A'*x = b.
- *
- * Unchanged on exit.
- *
- * DIAG - CHARACTER*1.
- * On entry, DIAG specifies whether or not A is unit
- * triangular as follows:
- *
- * DIAG = 'U' or 'u' A is assumed to be unit triangular.
- *
- * DIAG = 'N' or 'n' A is not assumed to be unit
- * triangular.
- *
- * Unchanged on exit.
- *
- * N - INTEGER.
- * On entry, N specifies the order of the matrix A.
- * N must be at least zero.
- * Unchanged on exit.
- *
- * K - INTEGER.
- * On entry with UPLO = 'U' or 'u', K specifies the number of
- * super-diagonals of the matrix A.
- * On entry with UPLO = 'L' or 'l', K specifies the number of
- * sub-diagonals of the matrix A.
- * K must satisfy 0 .le. K.
- * Unchanged on exit.
- *
- * A - DOUBLE PRECISION array of DIMENSION ( LDA, n ).
- * Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
- * by n part of the array A must contain the upper triangular
- * band part of the matrix of coefficients, supplied column by
- * column, with the leading diagonal of the matrix in row
- * ( k + 1 ) of the array, the first super-diagonal starting at
- * position 2 in row k, and so on. The top left k by k triangle
- * of the array A is not referenced.
- * The following program segment will transfer an upper
- * triangular band matrix from conventional full matrix storage
- * to band storage:
- *
- * DO 20, J = 1, N
- * M = K + 1 - J
- * DO 10, I = MAX( 1, J - K ), J
- * A( M + I, J ) = matrix( I, J )
- * 10 CONTINUE
- * 20 CONTINUE
- *
- * Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
- * by n part of the array A must contain the lower triangular
- * band part of the matrix of coefficients, supplied column by
- * column, with the leading diagonal of the matrix in row 1 of
- * the array, the first sub-diagonal starting at position 1 in
- * row 2, and so on. The bottom right k by k triangle of the
- * array A is not referenced.
- * The following program segment will transfer a lower
- * triangular band matrix from conventional full matrix storage
- * to band storage:
- *
- * DO 20, J = 1, N
- * M = 1 - J
- * DO 10, I = J, MIN( N, J + K )
- * A( M + I, J ) = matrix( I, J )
- * 10 CONTINUE
- * 20 CONTINUE
- *
- * Note that when DIAG = 'U' or 'u' the elements of the array A
- * corresponding to the diagonal elements of the matrix are not
- * referenced, but are assumed to be unity.
- * Unchanged on exit.
- *
- * LDA - INTEGER.
- * On entry, LDA specifies the first dimension of A as declared
- * in the calling (sub) program. LDA must be at least
- * ( k + 1 ).
- * Unchanged on exit.
- *
- * X - DOUBLE PRECISION array of dimension at least
- * ( 1 + ( n - 1 )*abs( INCX ) ).
- * Before entry, the incremented array X must contain the n
- * element right-hand side vector b. On exit, X is overwritten
- * with the solution vector x.
- *
- * INCX - INTEGER.
- * On entry, INCX specifies the increment for the elements of
- * X. INCX must not be zero.
- * Unchanged on exit.
- *
- *
- * Level 2 Blas routine.
- *
- * -- Written on 22-October-1986.
- * Jack Dongarra, Argonne National Lab.
- * Jeremy Du Croz, Nag Central Office.
- * Sven Hammarling, Nag Central Office.
- * Richard Hanson, Sandia National Labs.
- *
- *
- * .. Parameters ..
- DOUBLE PRECISION ZERO
- PARAMETER (ZERO=0.0D+0)
- * ..
- * .. Local Scalars ..
- DOUBLE PRECISION TEMP
- INTEGER I,INFO,IX,J,JX,KPLUS1,KX,L
- LOGICAL NOUNIT
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. External Subroutines ..
- EXTERNAL XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX,MIN
- * ..
- *
- * Test the input parameters.
- *
- INFO = 0
- IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
- INFO = 1
- ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
- + .NOT.LSAME(TRANS,'C')) THEN
- INFO = 2
- ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
- INFO = 3
- ELSE IF (N.LT.0) THEN
- INFO = 4
- ELSE IF (K.LT.0) THEN
- INFO = 5
- ELSE IF (LDA.LT. (K+1)) THEN
- INFO = 7
- ELSE IF (INCX.EQ.0) THEN
- INFO = 9
- END IF
- IF (INFO.NE.0) THEN
- CALL XERBLA('DTBSV ',INFO)
- RETURN
- END IF
- *
- * Quick return if possible.
- *
- IF (N.EQ.0) RETURN
- *
- NOUNIT = LSAME(DIAG,'N')
- *
- * Set up the start point in X if the increment is not unity. This
- * will be ( N - 1 )*INCX too small for descending loops.
- *
- IF (INCX.LE.0) THEN
- KX = 1 - (N-1)*INCX
- ELSE IF (INCX.NE.1) THEN
- KX = 1
- END IF
- *
- * Start the operations. In this version the elements of A are
- * accessed by sequentially with one pass through A.
- *
- IF (LSAME(TRANS,'N')) THEN
- *
- * Form x := inv( A )*x.
- *
- IF (LSAME(UPLO,'U')) THEN
- KPLUS1 = K + 1
- IF (INCX.EQ.1) THEN
- DO 20 J = N,1,-1
- IF (X(J).NE.ZERO) THEN
- L = KPLUS1 - J
- IF (NOUNIT) X(J) = X(J)/A(KPLUS1,J)
- TEMP = X(J)
- DO 10 I = J - 1,MAX(1,J-K),-1
- X(I) = X(I) - TEMP*A(L+I,J)
- 10 CONTINUE
- END IF
- 20 CONTINUE
- ELSE
- KX = KX + (N-1)*INCX
- JX = KX
- DO 40 J = N,1,-1
- KX = KX - INCX
- IF (X(JX).NE.ZERO) THEN
- IX = KX
- L = KPLUS1 - J
- IF (NOUNIT) X(JX) = X(JX)/A(KPLUS1,J)
- TEMP = X(JX)
- DO 30 I = J - 1,MAX(1,J-K),-1
- X(IX) = X(IX) - TEMP*A(L+I,J)
- IX = IX - INCX
- 30 CONTINUE
- END IF
- JX = JX - INCX
- 40 CONTINUE
- END IF
- ELSE
- IF (INCX.EQ.1) THEN
- DO 60 J = 1,N
- IF (X(J).NE.ZERO) THEN
- L = 1 - J
- IF (NOUNIT) X(J) = X(J)/A(1,J)
- TEMP = X(J)
- DO 50 I = J + 1,MIN(N,J+K)
- X(I) = X(I) - TEMP*A(L+I,J)
- 50 CONTINUE
- END IF
- 60 CONTINUE
- ELSE
- JX = KX
- DO 80 J = 1,N
- KX = KX + INCX
- IF (X(JX).NE.ZERO) THEN
- IX = KX
- L = 1 - J
- IF (NOUNIT) X(JX) = X(JX)/A(1,J)
- TEMP = X(JX)
- DO 70 I = J + 1,MIN(N,J+K)
- X(IX) = X(IX) - TEMP*A(L+I,J)
- IX = IX + INCX
- 70 CONTINUE
- END IF
- JX = JX + INCX
- 80 CONTINUE
- END IF
- END IF
- ELSE
- *
- * Form x := inv( A')*x.
- *
- IF (LSAME(UPLO,'U')) THEN
- KPLUS1 = K + 1
- IF (INCX.EQ.1) THEN
- DO 100 J = 1,N
- TEMP = X(J)
- L = KPLUS1 - J
- DO 90 I = MAX(1,J-K),J - 1
- TEMP = TEMP - A(L+I,J)*X(I)
- 90 CONTINUE
- IF (NOUNIT) TEMP = TEMP/A(KPLUS1,J)
- X(J) = TEMP
- 100 CONTINUE
- ELSE
- JX = KX
- DO 120 J = 1,N
- TEMP = X(JX)
- IX = KX
- L = KPLUS1 - J
- DO 110 I = MAX(1,J-K),J - 1
- TEMP = TEMP - A(L+I,J)*X(IX)
- IX = IX + INCX
- 110 CONTINUE
- IF (NOUNIT) TEMP = TEMP/A(KPLUS1,J)
- X(JX) = TEMP
- JX = JX + INCX
- IF (J.GT.K) KX = KX + INCX
- 120 CONTINUE
- END IF
- ELSE
- IF (INCX.EQ.1) THEN
- DO 140 J = N,1,-1
- TEMP = X(J)
- L = 1 - J
- DO 130 I = MIN(N,J+K),J + 1,-1
- TEMP = TEMP - A(L+I,J)*X(I)
- 130 CONTINUE
- IF (NOUNIT) TEMP = TEMP/A(1,J)
- X(J) = TEMP
- 140 CONTINUE
- ELSE
- KX = KX + (N-1)*INCX
- JX = KX
- DO 160 J = N,1,-1
- TEMP = X(JX)
- IX = KX
- L = 1 - J
- DO 150 I = MIN(N,J+K),J + 1,-1
- TEMP = TEMP - A(L+I,J)*X(IX)
- IX = IX - INCX
- 150 CONTINUE
- IF (NOUNIT) TEMP = TEMP/A(1,J)
- X(JX) = TEMP
- JX = JX - INCX
- IF ((N-J).GE.K) KX = KX - INCX
- 160 CONTINUE
- END IF
- END IF
- END IF
- *
- RETURN
- *
- * End of DTBSV .
- *
- END
|