|
- *> \brief \b ZERRHE
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZERRHE( PATH, NUNIT )
- *
- * .. Scalar Arguments ..
- * CHARACTER*3 PATH
- * INTEGER NUNIT
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZERRHE tests the error exits for the COMPLEX*16 routines
- *> for Hermitian indefinite matrices.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] PATH
- *> \verbatim
- *> PATH is CHARACTER*3
- *> The LAPACK path name for the routines to be tested.
- *> \endverbatim
- *>
- *> \param[in] NUNIT
- *> \verbatim
- *> NUNIT is INTEGER
- *> The unit number for output.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date November 2013
- *
- *> \ingroup complex16_lin
- *
- * =====================================================================
- SUBROUTINE ZERRHE( PATH, NUNIT )
- *
- * -- LAPACK test routine (version 3.5.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * November 2013
- *
- * .. Scalar Arguments ..
- CHARACTER*3 PATH
- INTEGER NUNIT
- * ..
- *
- * =====================================================================
- *
- *
- * .. Parameters ..
- INTEGER NMAX
- PARAMETER ( NMAX = 4 )
- * ..
- * .. Local Scalars ..
- CHARACTER*2 C2
- INTEGER I, INFO, J
- DOUBLE PRECISION ANRM, RCOND
- * ..
- * .. Local Arrays ..
- INTEGER IP( NMAX )
- DOUBLE PRECISION R( NMAX ), R1( NMAX ), R2( NMAX )
- COMPLEX*16 A( NMAX, NMAX ), AF( NMAX, NMAX ), B( NMAX ),
- $ W( 2*NMAX ), X( NMAX )
- * ..
- * .. External Functions ..
- LOGICAL LSAMEN
- EXTERNAL LSAMEN
- * ..
- * .. External Subroutines ..
- EXTERNAL ALAESM, CHKXER, ZHECON, ZHECON_ROOK, ZHERFS,
- $ ZHETF2, ZHETF2_ROOK, ZHETRF, ZHETRF_ROOK,
- $ ZHETRI, ZHETRI_ROOK, ZHETRI2, ZHETRS,
- $ ZHETRS_ROOK, ZHPCON, ZHPRFS, ZHPTRF, ZHPTRI,
- $ ZHPTRS
- * ..
- * .. Scalars in Common ..
- LOGICAL LERR, OK
- CHARACTER*32 SRNAMT
- INTEGER INFOT, NOUT
- * ..
- * .. Common blocks ..
- COMMON / INFOC / INFOT, NOUT, OK, LERR
- COMMON / SRNAMC / SRNAMT
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC DBLE, DCMPLX
- * ..
- * .. Executable Statements ..
- *
- NOUT = NUNIT
- WRITE( NOUT, FMT = * )
- C2 = PATH( 2: 3 )
- *
- * Set the variables to innocuous values.
- *
- DO 20 J = 1, NMAX
- DO 10 I = 1, NMAX
- A( I, J ) = DCMPLX( 1.D0 / DBLE( I+J ),
- $ -1.D0 / DBLE( I+J ) )
- AF( I, J ) = DCMPLX( 1.D0 / DBLE( I+J ),
- $ -1.D0 / DBLE( I+J ) )
- 10 CONTINUE
- B( J ) = 0.D0
- R1( J ) = 0.D0
- R2( J ) = 0.D0
- W( J ) = 0.D0
- X( J ) = 0.D0
- IP( J ) = J
- 20 CONTINUE
- ANRM = 1.0D0
- OK = .TRUE.
- *
- * Test error exits of the routines that use factorization
- * of a Hermitian indefinite matrix with patrial
- * (Bunch-Kaufman) diagonal pivoting method.
- *
- IF( LSAMEN( 2, C2, 'HE' ) ) THEN
- *
- * ZHETRF
- *
- SRNAMT = 'ZHETRF'
- INFOT = 1
- CALL ZHETRF( '/', 0, A, 1, IP, W, 1, INFO )
- CALL CHKXER( 'ZHETRF', INFOT, NOUT, LERR, OK )
- INFOT = 2
- CALL ZHETRF( 'U', -1, A, 1, IP, W, 1, INFO )
- CALL CHKXER( 'ZHETRF', INFOT, NOUT, LERR, OK )
- INFOT = 4
- CALL ZHETRF( 'U', 2, A, 1, IP, W, 4, INFO )
- CALL CHKXER( 'ZHETRF', INFOT, NOUT, LERR, OK )
- *
- * ZHETF2
- *
- SRNAMT = 'ZHETF2'
- INFOT = 1
- CALL ZHETF2( '/', 0, A, 1, IP, INFO )
- CALL CHKXER( 'ZHETF2', INFOT, NOUT, LERR, OK )
- INFOT = 2
- CALL ZHETF2( 'U', -1, A, 1, IP, INFO )
- CALL CHKXER( 'ZHETF2', INFOT, NOUT, LERR, OK )
- INFOT = 4
- CALL ZHETF2( 'U', 2, A, 1, IP, INFO )
- CALL CHKXER( 'ZHETF2', INFOT, NOUT, LERR, OK )
- *
- * ZHETRI
- *
- SRNAMT = 'ZHETRI'
- INFOT = 1
- CALL ZHETRI( '/', 0, A, 1, IP, W, INFO )
- CALL CHKXER( 'ZHETRI', INFOT, NOUT, LERR, OK )
- INFOT = 2
- CALL ZHETRI( 'U', -1, A, 1, IP, W, INFO )
- CALL CHKXER( 'ZHETRI', INFOT, NOUT, LERR, OK )
- INFOT = 4
- CALL ZHETRI( 'U', 2, A, 1, IP, W, INFO )
- CALL CHKXER( 'ZHETRI', INFOT, NOUT, LERR, OK )
- *
- * ZHETRI2
- *
- SRNAMT = 'ZHETRI2'
- INFOT = 1
- CALL ZHETRI2( '/', 0, A, 1, IP, W, 1, INFO )
- CALL CHKXER( 'ZHETRI2', INFOT, NOUT, LERR, OK )
- INFOT = 2
- CALL ZHETRI2( 'U', -1, A, 1, IP, W, 1, INFO )
- CALL CHKXER( 'ZHETRI2', INFOT, NOUT, LERR, OK )
- INFOT = 4
- CALL ZHETRI2( 'U', 2, A, 1, IP, W, 1, INFO )
- CALL CHKXER( 'ZHETRI2', INFOT, NOUT, LERR, OK )
- *
- * ZHETRS
- *
- SRNAMT = 'ZHETRS'
- INFOT = 1
- CALL ZHETRS( '/', 0, 0, A, 1, IP, B, 1, INFO )
- CALL CHKXER( 'ZHETRS', INFOT, NOUT, LERR, OK )
- INFOT = 2
- CALL ZHETRS( 'U', -1, 0, A, 1, IP, B, 1, INFO )
- CALL CHKXER( 'ZHETRS', INFOT, NOUT, LERR, OK )
- INFOT = 3
- CALL ZHETRS( 'U', 0, -1, A, 1, IP, B, 1, INFO )
- CALL CHKXER( 'ZHETRS', INFOT, NOUT, LERR, OK )
- INFOT = 5
- CALL ZHETRS( 'U', 2, 1, A, 1, IP, B, 2, INFO )
- CALL CHKXER( 'ZHETRS', INFOT, NOUT, LERR, OK )
- INFOT = 8
- CALL ZHETRS( 'U', 2, 1, A, 2, IP, B, 1, INFO )
- CALL CHKXER( 'ZHETRS', INFOT, NOUT, LERR, OK )
- *
- * ZHERFS
- *
- SRNAMT = 'ZHERFS'
- INFOT = 1
- CALL ZHERFS( '/', 0, 0, A, 1, AF, 1, IP, B, 1, X, 1, R1, R2, W,
- $ R, INFO )
- CALL CHKXER( 'ZHERFS', INFOT, NOUT, LERR, OK )
- INFOT = 2
- CALL ZHERFS( 'U', -1, 0, A, 1, AF, 1, IP, B, 1, X, 1, R1, R2,
- $ W, R, INFO )
- CALL CHKXER( 'ZHERFS', INFOT, NOUT, LERR, OK )
- INFOT = 3
- CALL ZHERFS( 'U', 0, -1, A, 1, AF, 1, IP, B, 1, X, 1, R1, R2,
- $ W, R, INFO )
- CALL CHKXER( 'ZHERFS', INFOT, NOUT, LERR, OK )
- INFOT = 5
- CALL ZHERFS( 'U', 2, 1, A, 1, AF, 2, IP, B, 2, X, 2, R1, R2, W,
- $ R, INFO )
- CALL CHKXER( 'ZHERFS', INFOT, NOUT, LERR, OK )
- INFOT = 7
- CALL ZHERFS( 'U', 2, 1, A, 2, AF, 1, IP, B, 2, X, 2, R1, R2, W,
- $ R, INFO )
- CALL CHKXER( 'ZHERFS', INFOT, NOUT, LERR, OK )
- INFOT = 10
- CALL ZHERFS( 'U', 2, 1, A, 2, AF, 2, IP, B, 1, X, 2, R1, R2, W,
- $ R, INFO )
- CALL CHKXER( 'ZHERFS', INFOT, NOUT, LERR, OK )
- INFOT = 12
- CALL ZHERFS( 'U', 2, 1, A, 2, AF, 2, IP, B, 2, X, 1, R1, R2, W,
- $ R, INFO )
- CALL CHKXER( 'ZHERFS', INFOT, NOUT, LERR, OK )
- *
- * ZHECON
- *
- SRNAMT = 'ZHECON'
- INFOT = 1
- CALL ZHECON( '/', 0, A, 1, IP, ANRM, RCOND, W, INFO )
- CALL CHKXER( 'ZHECON', INFOT, NOUT, LERR, OK )
- INFOT = 2
- CALL ZHECON( 'U', -1, A, 1, IP, ANRM, RCOND, W, INFO )
- CALL CHKXER( 'ZHECON', INFOT, NOUT, LERR, OK )
- INFOT = 4
- CALL ZHECON( 'U', 2, A, 1, IP, ANRM, RCOND, W, INFO )
- CALL CHKXER( 'ZHECON', INFOT, NOUT, LERR, OK )
- INFOT = 6
- CALL ZHECON( 'U', 1, A, 1, IP, -ANRM, RCOND, W, INFO )
- CALL CHKXER( 'ZHECON', INFOT, NOUT, LERR, OK )
- *
- * Test error exits of the routines that use factorization
- * of a Hermitian indefinite matrix with "rook"
- * (bounded Bunch-Kaufman) diagonal pivoting method.
- *
- ELSE IF( LSAMEN( 2, C2, 'HR' ) ) THEN
- *
- * ZHETRF_ROOK
- *
- SRNAMT = 'ZHETRF_ROOK'
- INFOT = 1
- CALL ZHETRF_ROOK( '/', 0, A, 1, IP, W, 1, INFO )
- CALL CHKXER( 'ZHETRF_ROOK', INFOT, NOUT, LERR, OK )
- INFOT = 2
- CALL ZHETRF_ROOK( 'U', -1, A, 1, IP, W, 1, INFO )
- CALL CHKXER( 'ZHETRF_ROOK', INFOT, NOUT, LERR, OK )
- INFOT = 4
- CALL ZHETRF_ROOK( 'U', 2, A, 1, IP, W, 4, INFO )
- CALL CHKXER( 'ZHETRF_ROOK', INFOT, NOUT, LERR, OK )
- *
- * ZHETF2_ROOK
- *
- SRNAMT = 'ZHETF2_ROOK'
- INFOT = 1
- CALL ZHETF2_ROOK( '/', 0, A, 1, IP, INFO )
- CALL CHKXER( 'ZHETF2_ROOK', INFOT, NOUT, LERR, OK )
- INFOT = 2
- CALL ZHETF2_ROOK( 'U', -1, A, 1, IP, INFO )
- CALL CHKXER( 'ZHETF2_ROOK', INFOT, NOUT, LERR, OK )
- INFOT = 4
- CALL ZHETF2_ROOK( 'U', 2, A, 1, IP, INFO )
- CALL CHKXER( 'ZHETF2_ROOK', INFOT, NOUT, LERR, OK )
- *
- * ZHETRI_ROOK
- *
- SRNAMT = 'ZHETRI_ROOK'
- INFOT = 1
- CALL ZHETRI_ROOK( '/', 0, A, 1, IP, W, INFO )
- CALL CHKXER( 'ZHETRI_ROOK', INFOT, NOUT, LERR, OK )
- INFOT = 2
- CALL ZHETRI_ROOK( 'U', -1, A, 1, IP, W, INFO )
- CALL CHKXER( 'ZHETRI_ROOK', INFOT, NOUT, LERR, OK )
- INFOT = 4
- CALL ZHETRI_ROOK( 'U', 2, A, 1, IP, W, INFO )
- CALL CHKXER( 'ZHETRI_ROOK', INFOT, NOUT, LERR, OK )
- *
- * ZHETRS_ROOK
- *
- SRNAMT = 'ZHETRS_ROOK'
- INFOT = 1
- CALL ZHETRS_ROOK( '/', 0, 0, A, 1, IP, B, 1, INFO )
- CALL CHKXER( 'ZHETRS_ROOK', INFOT, NOUT, LERR, OK )
- INFOT = 2
- CALL ZHETRS_ROOK( 'U', -1, 0, A, 1, IP, B, 1, INFO )
- CALL CHKXER( 'ZHETRS_ROOK', INFOT, NOUT, LERR, OK )
- INFOT = 3
- CALL ZHETRS_ROOK( 'U', 0, -1, A, 1, IP, B, 1, INFO )
- CALL CHKXER( 'ZHETRS_ROOK', INFOT, NOUT, LERR, OK )
- INFOT = 5
- CALL ZHETRS_ROOK( 'U', 2, 1, A, 1, IP, B, 2, INFO )
- CALL CHKXER( 'ZHETRS_ROOK', INFOT, NOUT, LERR, OK )
- INFOT = 8
- CALL ZHETRS_ROOK( 'U', 2, 1, A, 2, IP, B, 1, INFO )
- CALL CHKXER( 'ZHETRS_ROOK', INFOT, NOUT, LERR, OK )
- *
- * ZHECON_ROOK
- *
- SRNAMT = 'ZHECON_ROOK'
- INFOT = 1
- CALL ZHECON_ROOK( '/', 0, A, 1, IP, ANRM, RCOND, W, INFO )
- CALL CHKXER( 'ZHECON_ROOK', INFOT, NOUT, LERR, OK )
- INFOT = 2
- CALL ZHECON_ROOK( 'U', -1, A, 1, IP, ANRM, RCOND, W, INFO )
- CALL CHKXER( 'ZHECON_ROOK', INFOT, NOUT, LERR, OK )
- INFOT = 4
- CALL ZHECON_ROOK( 'U', 2, A, 1, IP, ANRM, RCOND, W, INFO )
- CALL CHKXER( 'ZHECON_ROOK', INFOT, NOUT, LERR, OK )
- INFOT = 6
- CALL ZHECON_ROOK( 'U', 1, A, 1, IP, -ANRM, RCOND, W, INFO )
- CALL CHKXER( 'ZHECON_ROOK', INFOT, NOUT, LERR, OK )
- *
- * Test error exits of the routines that use factorization
- * of a Hermitian indefinite packed matrix with patrial
- * (Bunch-Kaufman) diagonal pivoting method.
- *
- ELSE IF( LSAMEN( 2, C2, 'HP' ) ) THEN
- *
- * ZHPTRF
- *
- SRNAMT = 'ZHPTRF'
- INFOT = 1
- CALL ZHPTRF( '/', 0, A, IP, INFO )
- CALL CHKXER( 'ZHPTRF', INFOT, NOUT, LERR, OK )
- INFOT = 2
- CALL ZHPTRF( 'U', -1, A, IP, INFO )
- CALL CHKXER( 'ZHPTRF', INFOT, NOUT, LERR, OK )
- *
- * ZHPTRI
- *
- SRNAMT = 'ZHPTRI'
- INFOT = 1
- CALL ZHPTRI( '/', 0, A, IP, W, INFO )
- CALL CHKXER( 'ZHPTRI', INFOT, NOUT, LERR, OK )
- INFOT = 2
- CALL ZHPTRI( 'U', -1, A, IP, W, INFO )
- CALL CHKXER( 'ZHPTRI', INFOT, NOUT, LERR, OK )
- *
- * ZHPTRS
- *
- SRNAMT = 'ZHPTRS'
- INFOT = 1
- CALL ZHPTRS( '/', 0, 0, A, IP, B, 1, INFO )
- CALL CHKXER( 'ZHPTRS', INFOT, NOUT, LERR, OK )
- INFOT = 2
- CALL ZHPTRS( 'U', -1, 0, A, IP, B, 1, INFO )
- CALL CHKXER( 'ZHPTRS', INFOT, NOUT, LERR, OK )
- INFOT = 3
- CALL ZHPTRS( 'U', 0, -1, A, IP, B, 1, INFO )
- CALL CHKXER( 'ZHPTRS', INFOT, NOUT, LERR, OK )
- INFOT = 7
- CALL ZHPTRS( 'U', 2, 1, A, IP, B, 1, INFO )
- CALL CHKXER( 'ZHPTRS', INFOT, NOUT, LERR, OK )
- *
- * ZHPRFS
- *
- SRNAMT = 'ZHPRFS'
- INFOT = 1
- CALL ZHPRFS( '/', 0, 0, A, AF, IP, B, 1, X, 1, R1, R2, W, R,
- $ INFO )
- CALL CHKXER( 'ZHPRFS', INFOT, NOUT, LERR, OK )
- INFOT = 2
- CALL ZHPRFS( 'U', -1, 0, A, AF, IP, B, 1, X, 1, R1, R2, W, R,
- $ INFO )
- CALL CHKXER( 'ZHPRFS', INFOT, NOUT, LERR, OK )
- INFOT = 3
- CALL ZHPRFS( 'U', 0, -1, A, AF, IP, B, 1, X, 1, R1, R2, W, R,
- $ INFO )
- CALL CHKXER( 'ZHPRFS', INFOT, NOUT, LERR, OK )
- INFOT = 8
- CALL ZHPRFS( 'U', 2, 1, A, AF, IP, B, 1, X, 2, R1, R2, W, R,
- $ INFO )
- CALL CHKXER( 'ZHPRFS', INFOT, NOUT, LERR, OK )
- INFOT = 10
- CALL ZHPRFS( 'U', 2, 1, A, AF, IP, B, 2, X, 1, R1, R2, W, R,
- $ INFO )
- CALL CHKXER( 'ZHPRFS', INFOT, NOUT, LERR, OK )
- *
- * ZHPCON
- *
- SRNAMT = 'ZHPCON'
- INFOT = 1
- CALL ZHPCON( '/', 0, A, IP, ANRM, RCOND, W, INFO )
- CALL CHKXER( 'ZHPCON', INFOT, NOUT, LERR, OK )
- INFOT = 2
- CALL ZHPCON( 'U', -1, A, IP, ANRM, RCOND, W, INFO )
- CALL CHKXER( 'ZHPCON', INFOT, NOUT, LERR, OK )
- INFOT = 5
- CALL ZHPCON( 'U', 1, A, IP, -ANRM, RCOND, W, INFO )
- CALL CHKXER( 'ZHPCON', INFOT, NOUT, LERR, OK )
- END IF
- *
- * Print a summary line.
- *
- CALL ALAESM( PATH, OK, NOUT )
- *
- RETURN
- *
- * End of ZERRHE
- *
- END
|