|
- *> \brief \b SQRT05
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SQRT05(M,N,L,NB,RESULT)
- *
- * .. Scalar Arguments ..
- * INTEGER LWORK, M, N, L, NB, LDT
- * .. Return values ..
- * REAL RESULT(6)
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SQRT05 tests STPQRT and STPMQRT.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> Number of rows in lower part of the test matrix.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> Number of columns in test matrix.
- *> \endverbatim
- *>
- *> \param[in] L
- *> \verbatim
- *> L is INTEGER
- *> The number of rows of the upper trapezoidal part the
- *> lower test matrix. 0 <= L <= M.
- *> \endverbatim
- *>
- *> \param[in] NB
- *> \verbatim
- *> NB is INTEGER
- *> Block size of test matrix. NB <= N.
- *> \endverbatim
- *>
- *> \param[out] RESULT
- *> \verbatim
- *> RESULT is REAL array, dimension (6)
- *> Results of each of the six tests below.
- *>
- *> RESULT(1) = | A - Q R |
- *> RESULT(2) = | I - Q^H Q |
- *> RESULT(3) = | Q C - Q C |
- *> RESULT(4) = | Q^H C - Q^H C |
- *> RESULT(5) = | C Q - C Q |
- *> RESULT(6) = | C Q^H - C Q^H |
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date April 2012
- *
- *> \ingroup single_lin
- *
- * =====================================================================
- SUBROUTINE SQRT05(M,N,L,NB,RESULT)
- IMPLICIT NONE
- *
- * -- LAPACK test routine (version 3.4.1) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * April 2012
- *
- * .. Scalar Arguments ..
- INTEGER LWORK, M, N, L, NB, LDT
- * .. Return values ..
- REAL RESULT(6)
- *
- * =====================================================================
- *
- * ..
- * .. Local allocatable arrays
- REAL, ALLOCATABLE :: AF(:,:), Q(:,:),
- $ R(:,:), RWORK(:), WORK( : ), T(:,:),
- $ CF(:,:), DF(:,:), A(:,:), C(:,:), D(:,:)
- *
- * .. Parameters ..
- REAL ZERO, ONE
- PARAMETER( ZERO = 0.0, ONE = 1.0 )
- * ..
- * .. Local Scalars ..
- INTEGER INFO, J, K, M2, NP1
- REAL ANORM, EPS, RESID, CNORM, DNORM
- * ..
- * .. Local Arrays ..
- INTEGER ISEED( 4 )
- * ..
- * .. External Functions ..
- REAL SLAMCH
- REAL SLANGE, SLANSY
- LOGICAL LSAME
- EXTERNAL SLAMCH, SLANGE, SLANSY, LSAME
- * ..
- * .. Data statements ..
- DATA ISEED / 1988, 1989, 1990, 1991 /
- *
- EPS = SLAMCH( 'Epsilon' )
- K = N
- M2 = M+N
- IF( M.GT.0 ) THEN
- NP1 = N+1
- ELSE
- NP1 = 1
- END IF
- LWORK = M2*M2*NB
- *
- * Dynamically allocate all arrays
- *
- ALLOCATE(A(M2,N),AF(M2,N),Q(M2,M2),R(M2,M2),RWORK(M2),
- $ WORK(LWORK),T(NB,N),C(M2,N),CF(M2,N),
- $ D(N,M2),DF(N,M2) )
- *
- * Put random stuff into A
- *
- LDT=NB
- CALL SLASET( 'Full', M2, N, ZERO, ZERO, A, M2 )
- CALL SLASET( 'Full', NB, N, ZERO, ZERO, T, NB )
- DO J=1,N
- CALL SLARNV( 2, ISEED, J, A( 1, J ) )
- END DO
- IF( M.GT.0 ) THEN
- DO J=1,N
- CALL SLARNV( 2, ISEED, M-L, A( N+1, J ) )
- END DO
- END IF
- IF( L.GT.0 ) THEN
- DO J=1,N
- CALL SLARNV( 2, ISEED, MIN(J,L), A( N+M-L+1, J ) )
- END DO
- END IF
- *
- * Copy the matrix A to the array AF.
- *
- CALL SLACPY( 'Full', M2, N, A, M2, AF, M2 )
- *
- * Factor the matrix A in the array AF.
- *
- CALL STPQRT( M,N,L,NB,AF,M2,AF(NP1,1),M2,T,LDT,WORK,INFO)
- *
- * Generate the (M+N)-by-(M+N) matrix Q by applying H to I
- *
- CALL SLASET( 'Full', M2, M2, ZERO, ONE, Q, M2 )
- CALL SGEMQRT( 'R', 'N', M2, M2, K, NB, AF, M2, T, LDT, Q, M2,
- $ WORK, INFO )
- *
- * Copy R
- *
- CALL SLASET( 'Full', M2, N, ZERO, ZERO, R, M2 )
- CALL SLACPY( 'Upper', M2, N, AF, M2, R, M2 )
- *
- * Compute |R - Q'*A| / |A| and store in RESULT(1)
- *
- CALL SGEMM( 'T', 'N', M2, N, M2, -ONE, Q, M2, A, M2, ONE, R, M2 )
- ANORM = SLANGE( '1', M2, N, A, M2, RWORK )
- RESID = SLANGE( '1', M2, N, R, M2, RWORK )
- IF( ANORM.GT.ZERO ) THEN
- RESULT( 1 ) = RESID / (EPS*ANORM*MAX(1,M2))
- ELSE
- RESULT( 1 ) = ZERO
- END IF
- *
- * Compute |I - Q'*Q| and store in RESULT(2)
- *
- CALL SLASET( 'Full', M2, M2, ZERO, ONE, R, M2 )
- CALL SSYRK( 'U', 'C', M2, M2, -ONE, Q, M2, ONE,
- $ R, M2 )
- RESID = SLANSY( '1', 'Upper', M2, R, M2, RWORK )
- RESULT( 2 ) = RESID / (EPS*MAX(1,M2))
- *
- * Generate random m-by-n matrix C and a copy CF
- *
- DO J=1,N
- CALL SLARNV( 2, ISEED, M2, C( 1, J ) )
- END DO
- CNORM = SLANGE( '1', M2, N, C, M2, RWORK)
- CALL SLACPY( 'Full', M2, N, C, M2, CF, M2 )
- *
- * Apply Q to C as Q*C
- *
- CALL STPMQRT( 'L','N', M,N,K,L,NB,AF(NP1,1),M2,T,LDT,CF,
- $ M2,CF(NP1,1),M2,WORK,INFO)
- *
- * Compute |Q*C - Q*C| / |C|
- *
- CALL SGEMM( 'N', 'N', M2, N, M2, -ONE, Q,M2,C,M2,ONE,CF,M2)
- RESID = SLANGE( '1', M2, N, CF, M2, RWORK )
- IF( CNORM.GT.ZERO ) THEN
- RESULT( 3 ) = RESID / (EPS*MAX(1,M2)*CNORM)
- ELSE
- RESULT( 3 ) = ZERO
- END IF
- *
- * Copy C into CF again
- *
- CALL SLACPY( 'Full', M2, N, C, M2, CF, M2 )
- *
- * Apply Q to C as QT*C
- *
- CALL STPMQRT('L','T',M,N,K,L,NB,AF(NP1,1),M2,T,LDT,CF,M2,
- $ CF(NP1,1),M2,WORK,INFO)
- *
- * Compute |QT*C - QT*C| / |C|
- *
- CALL SGEMM('T','N',M2,N,M2,-ONE,Q,M2,C,M2,ONE,CF,M2)
- RESID = SLANGE( '1', M2, N, CF, M2, RWORK )
- IF( CNORM.GT.ZERO ) THEN
- RESULT( 4 ) = RESID / (EPS*MAX(1,M2)*CNORM)
- ELSE
- RESULT( 4 ) = ZERO
- END IF
- *
- * Generate random n-by-m matrix D and a copy DF
- *
- DO J=1,M2
- CALL SLARNV( 2, ISEED, N, D( 1, J ) )
- END DO
- DNORM = SLANGE( '1', N, M2, D, N, RWORK)
- CALL SLACPY( 'Full', N, M2, D, N, DF, N )
- *
- * Apply Q to D as D*Q
- *
- CALL STPMQRT('R','N',N,M,N,L,NB,AF(NP1,1),M2,T,LDT,DF,N,
- $ DF(1,NP1),N,WORK,INFO)
- *
- * Compute |D*Q - D*Q| / |D|
- *
- CALL SGEMM('N','N',N,M2,M2,-ONE,D,N,Q,M2,ONE,DF,N)
- RESID = SLANGE('1',N, M2,DF,N,RWORK )
- IF( CNORM.GT.ZERO ) THEN
- RESULT( 5 ) = RESID / (EPS*MAX(1,M2)*DNORM)
- ELSE
- RESULT( 5 ) = ZERO
- END IF
- *
- * Copy D into DF again
- *
- CALL SLACPY('Full',N,M2,D,N,DF,N )
- *
- * Apply Q to D as D*QT
- *
- CALL STPMQRT('R','T',N,M,N,L,NB,AF(NP1,1),M2,T,LDT,DF,N,
- $ DF(1,NP1),N,WORK,INFO)
-
- *
- * Compute |D*QT - D*QT| / |D|
- *
- CALL SGEMM( 'N', 'T', N, M2, M2, -ONE, D, N, Q, M2, ONE, DF, N )
- RESID = SLANGE( '1', N, M2, DF, N, RWORK )
- IF( CNORM.GT.ZERO ) THEN
- RESULT( 6 ) = RESID / (EPS*MAX(1,M2)*DNORM)
- ELSE
- RESULT( 6 ) = ZERO
- END IF
- *
- * Deallocate all arrays
- *
- DEALLOCATE ( A, AF, Q, R, RWORK, WORK, T, C, D, CF, DF)
- RETURN
- END
|