|
- *> \brief \b SGTT05
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SGTT05( TRANS, N, NRHS, DL, D, DU, B, LDB, X, LDX,
- * XACT, LDXACT, FERR, BERR, RESLTS )
- *
- * .. Scalar Arguments ..
- * CHARACTER TRANS
- * INTEGER LDB, LDX, LDXACT, N, NRHS
- * ..
- * .. Array Arguments ..
- * REAL B( LDB, * ), BERR( * ), D( * ), DL( * ),
- * $ DU( * ), FERR( * ), RESLTS( * ), X( LDX, * ),
- * $ XACT( LDXACT, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SGTT05 tests the error bounds from iterative refinement for the
- *> computed solution to a system of equations A*X = B, where A is a
- *> general tridiagonal matrix of order n and op(A) = A or A**T,
- *> depending on TRANS.
- *>
- *> RESLTS(1) = test of the error bound
- *> = norm(X - XACT) / ( norm(X) * FERR )
- *>
- *> A large value is returned if this ratio is not less than one.
- *>
- *> RESLTS(2) = residual from the iterative refinement routine
- *> = the maximum of BERR / ( NZ*EPS + (*) ), where
- *> (*) = NZ*UNFL / (min_i (abs(op(A))*abs(X) +abs(b))_i )
- *> and NZ = max. number of nonzeros in any row of A, plus 1
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] TRANS
- *> \verbatim
- *> TRANS is CHARACTER*1
- *> Specifies the form of the system of equations.
- *> = 'N': A * X = B (No transpose)
- *> = 'T': A**T * X = B (Transpose)
- *> = 'C': A**H * X = B (Conjugate transpose = Transpose)
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of rows of the matrices X and XACT. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] NRHS
- *> \verbatim
- *> NRHS is INTEGER
- *> The number of columns of the matrices X and XACT. NRHS >= 0.
- *> \endverbatim
- *>
- *> \param[in] DL
- *> \verbatim
- *> DL is REAL array, dimension (N-1)
- *> The (n-1) sub-diagonal elements of A.
- *> \endverbatim
- *>
- *> \param[in] D
- *> \verbatim
- *> D is REAL array, dimension (N)
- *> The diagonal elements of A.
- *> \endverbatim
- *>
- *> \param[in] DU
- *> \verbatim
- *> DU is REAL array, dimension (N-1)
- *> The (n-1) super-diagonal elements of A.
- *> \endverbatim
- *>
- *> \param[in] B
- *> \verbatim
- *> B is REAL array, dimension (LDB,NRHS)
- *> The right hand side vectors for the system of linear
- *> equations.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the array B. LDB >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in] X
- *> \verbatim
- *> X is REAL array, dimension (LDX,NRHS)
- *> The computed solution vectors. Each vector is stored as a
- *> column of the matrix X.
- *> \endverbatim
- *>
- *> \param[in] LDX
- *> \verbatim
- *> LDX is INTEGER
- *> The leading dimension of the array X. LDX >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in] XACT
- *> \verbatim
- *> XACT is REAL array, dimension (LDX,NRHS)
- *> The exact solution vectors. Each vector is stored as a
- *> column of the matrix XACT.
- *> \endverbatim
- *>
- *> \param[in] LDXACT
- *> \verbatim
- *> LDXACT is INTEGER
- *> The leading dimension of the array XACT. LDXACT >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in] FERR
- *> \verbatim
- *> FERR is REAL array, dimension (NRHS)
- *> The estimated forward error bounds for each solution vector
- *> X. If XTRUE is the true solution, FERR bounds the magnitude
- *> of the largest entry in (X - XTRUE) divided by the magnitude
- *> of the largest entry in X.
- *> \endverbatim
- *>
- *> \param[in] BERR
- *> \verbatim
- *> BERR is REAL array, dimension (NRHS)
- *> The componentwise relative backward error of each solution
- *> vector (i.e., the smallest relative change in any entry of A
- *> or B that makes X an exact solution).
- *> \endverbatim
- *>
- *> \param[out] RESLTS
- *> \verbatim
- *> RESLTS is REAL array, dimension (2)
- *> The maximum over the NRHS solution vectors of the ratios:
- *> RESLTS(1) = norm(X - XACT) / ( norm(X) * FERR )
- *> RESLTS(2) = BERR / ( NZ*EPS + (*) )
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date November 2011
- *
- *> \ingroup single_lin
- *
- * =====================================================================
- SUBROUTINE SGTT05( TRANS, N, NRHS, DL, D, DU, B, LDB, X, LDX,
- $ XACT, LDXACT, FERR, BERR, RESLTS )
- *
- * -- LAPACK test routine (version 3.4.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * November 2011
- *
- * .. Scalar Arguments ..
- CHARACTER TRANS
- INTEGER LDB, LDX, LDXACT, N, NRHS
- * ..
- * .. Array Arguments ..
- REAL B( LDB, * ), BERR( * ), D( * ), DL( * ),
- $ DU( * ), FERR( * ), RESLTS( * ), X( LDX, * ),
- $ XACT( LDXACT, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ZERO, ONE
- PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL NOTRAN
- INTEGER I, IMAX, J, K, NZ
- REAL AXBI, DIFF, EPS, ERRBND, OVFL, TMP, UNFL, XNORM
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- INTEGER ISAMAX
- REAL SLAMCH
- EXTERNAL LSAME, ISAMAX, SLAMCH
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, MAX, MIN
- * ..
- * .. Executable Statements ..
- *
- * Quick exit if N = 0 or NRHS = 0.
- *
- IF( N.LE.0 .OR. NRHS.LE.0 ) THEN
- RESLTS( 1 ) = ZERO
- RESLTS( 2 ) = ZERO
- RETURN
- END IF
- *
- EPS = SLAMCH( 'Epsilon' )
- UNFL = SLAMCH( 'Safe minimum' )
- OVFL = ONE / UNFL
- NOTRAN = LSAME( TRANS, 'N' )
- NZ = 4
- *
- * Test 1: Compute the maximum of
- * norm(X - XACT) / ( norm(X) * FERR )
- * over all the vectors X and XACT using the infinity-norm.
- *
- ERRBND = ZERO
- DO 30 J = 1, NRHS
- IMAX = ISAMAX( N, X( 1, J ), 1 )
- XNORM = MAX( ABS( X( IMAX, J ) ), UNFL )
- DIFF = ZERO
- DO 10 I = 1, N
- DIFF = MAX( DIFF, ABS( X( I, J )-XACT( I, J ) ) )
- 10 CONTINUE
- *
- IF( XNORM.GT.ONE ) THEN
- GO TO 20
- ELSE IF( DIFF.LE.OVFL*XNORM ) THEN
- GO TO 20
- ELSE
- ERRBND = ONE / EPS
- GO TO 30
- END IF
- *
- 20 CONTINUE
- IF( DIFF / XNORM.LE.FERR( J ) ) THEN
- ERRBND = MAX( ERRBND, ( DIFF / XNORM ) / FERR( J ) )
- ELSE
- ERRBND = ONE / EPS
- END IF
- 30 CONTINUE
- RESLTS( 1 ) = ERRBND
- *
- * Test 2: Compute the maximum of BERR / ( NZ*EPS + (*) ), where
- * (*) = NZ*UNFL / (min_i (abs(op(A))*abs(X) +abs(b))_i )
- *
- DO 60 K = 1, NRHS
- IF( NOTRAN ) THEN
- IF( N.EQ.1 ) THEN
- AXBI = ABS( B( 1, K ) ) + ABS( D( 1 )*X( 1, K ) )
- ELSE
- AXBI = ABS( B( 1, K ) ) + ABS( D( 1 )*X( 1, K ) ) +
- $ ABS( DU( 1 )*X( 2, K ) )
- DO 40 I = 2, N - 1
- TMP = ABS( B( I, K ) ) + ABS( DL( I-1 )*X( I-1, K ) )
- $ + ABS( D( I )*X( I, K ) ) +
- $ ABS( DU( I )*X( I+1, K ) )
- AXBI = MIN( AXBI, TMP )
- 40 CONTINUE
- TMP = ABS( B( N, K ) ) + ABS( DL( N-1 )*X( N-1, K ) ) +
- $ ABS( D( N )*X( N, K ) )
- AXBI = MIN( AXBI, TMP )
- END IF
- ELSE
- IF( N.EQ.1 ) THEN
- AXBI = ABS( B( 1, K ) ) + ABS( D( 1 )*X( 1, K ) )
- ELSE
- AXBI = ABS( B( 1, K ) ) + ABS( D( 1 )*X( 1, K ) ) +
- $ ABS( DL( 1 )*X( 2, K ) )
- DO 50 I = 2, N - 1
- TMP = ABS( B( I, K ) ) + ABS( DU( I-1 )*X( I-1, K ) )
- $ + ABS( D( I )*X( I, K ) ) +
- $ ABS( DL( I )*X( I+1, K ) )
- AXBI = MIN( AXBI, TMP )
- 50 CONTINUE
- TMP = ABS( B( N, K ) ) + ABS( DU( N-1 )*X( N-1, K ) ) +
- $ ABS( D( N )*X( N, K ) )
- AXBI = MIN( AXBI, TMP )
- END IF
- END IF
- TMP = BERR( K ) / ( NZ*EPS+NZ*UNFL / MAX( AXBI, NZ*UNFL ) )
- IF( K.EQ.1 ) THEN
- RESLTS( 2 ) = TMP
- ELSE
- RESLTS( 2 ) = MAX( RESLTS( 2 ), TMP )
- END IF
- 60 CONTINUE
- *
- RETURN
- *
- * End of SGTT05
- *
- END
|