|
- *> \brief \b SDRVRFP
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SDRVRFP( NOUT, NN, NVAL, NNS, NSVAL, NNT, NTVAL,
- * + THRESH, A, ASAV, AFAC, AINV, B,
- * + BSAV, XACT, X, ARF, ARFINV,
- * + S_WORK_SLATMS, S_WORK_SPOT01, S_TEMP_SPOT02,
- * + S_TEMP_SPOT03, S_WORK_SLANSY,
- * + S_WORK_SPOT02, S_WORK_SPOT03 )
- *
- * .. Scalar Arguments ..
- * INTEGER NN, NNS, NNT, NOUT
- * REAL THRESH
- * ..
- * .. Array Arguments ..
- * INTEGER NVAL( NN ), NSVAL( NNS ), NTVAL( NNT )
- * REAL A( * )
- * REAL AINV( * )
- * REAL ASAV( * )
- * REAL B( * )
- * REAL BSAV( * )
- * REAL AFAC( * )
- * REAL ARF( * )
- * REAL ARFINV( * )
- * REAL XACT( * )
- * REAL X( * )
- * REAL S_WORK_SLATMS( * )
- * REAL S_WORK_SPOT01( * )
- * REAL S_TEMP_SPOT02( * )
- * REAL S_TEMP_SPOT03( * )
- * REAL S_WORK_SLANSY( * )
- * REAL S_WORK_SPOT02( * )
- * REAL S_WORK_SPOT03( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SDRVRFP tests the LAPACK RFP routines:
- *> SPFTRF, SPFTRS, and SPFTRI.
- *>
- *> This testing routine follow the same tests as DDRVPO (test for the full
- *> format Symmetric Positive Definite solver).
- *>
- *> The tests are performed in Full Format, convertion back and forth from
- *> full format to RFP format are performed using the routines STRTTF and
- *> STFTTR.
- *>
- *> First, a specific matrix A of size N is created. There is nine types of
- *> different matrixes possible.
- *> 1. Diagonal 6. Random, CNDNUM = sqrt(0.1/EPS)
- *> 2. Random, CNDNUM = 2 7. Random, CNDNUM = 0.1/EPS
- *> *3. First row and column zero 8. Scaled near underflow
- *> *4. Last row and column zero 9. Scaled near overflow
- *> *5. Middle row and column zero
- *> (* - tests error exits from SPFTRF, no test ratios are computed)
- *> A solution XACT of size N-by-NRHS is created and the associated right
- *> hand side B as well. Then SPFTRF is called to compute L (or U), the
- *> Cholesky factor of A. Then L (or U) is used to solve the linear system
- *> of equations AX = B. This gives X. Then L (or U) is used to compute the
- *> inverse of A, AINV. The following four tests are then performed:
- *> (1) norm( L*L' - A ) / ( N * norm(A) * EPS ) or
- *> norm( U'*U - A ) / ( N * norm(A) * EPS ),
- *> (2) norm(B - A*X) / ( norm(A) * norm(X) * EPS ),
- *> (3) norm( I - A*AINV ) / ( N * norm(A) * norm(AINV) * EPS ),
- *> (4) ( norm(X-XACT) * RCOND ) / ( norm(XACT) * EPS ),
- *> where EPS is the machine precision, RCOND the condition number of A, and
- *> norm( . ) the 1-norm for (1,2,3) and the inf-norm for (4).
- *> Errors occur when INFO parameter is not as expected. Failures occur when
- *> a test ratios is greater than THRES.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] NOUT
- *> \verbatim
- *> NOUT is INTEGER
- *> The unit number for output.
- *> \endverbatim
- *>
- *> \param[in] NN
- *> \verbatim
- *> NN is INTEGER
- *> The number of values of N contained in the vector NVAL.
- *> \endverbatim
- *>
- *> \param[in] NVAL
- *> \verbatim
- *> NVAL is INTEGER array, dimension (NN)
- *> The values of the matrix dimension N.
- *> \endverbatim
- *>
- *> \param[in] NNS
- *> \verbatim
- *> NNS is INTEGER
- *> The number of values of NRHS contained in the vector NSVAL.
- *> \endverbatim
- *>
- *> \param[in] NSVAL
- *> \verbatim
- *> NSVAL is INTEGER array, dimension (NNS)
- *> The values of the number of right-hand sides NRHS.
- *> \endverbatim
- *>
- *> \param[in] NNT
- *> \verbatim
- *> NNT is INTEGER
- *> The number of values of MATRIX TYPE contained in the vector NTVAL.
- *> \endverbatim
- *>
- *> \param[in] NTVAL
- *> \verbatim
- *> NTVAL is INTEGER array, dimension (NNT)
- *> The values of matrix type (between 0 and 9 for PO/PP/PF matrices).
- *> \endverbatim
- *>
- *> \param[in] THRESH
- *> \verbatim
- *> THRESH is REAL
- *> The threshold value for the test ratios. A result is
- *> included in the output file if RESULT >= THRESH. To have
- *> every test ratio printed, use THRESH = 0.
- *> \endverbatim
- *>
- *> \param[out] A
- *> \verbatim
- *> A is REAL array, dimension (NMAX*NMAX)
- *> \endverbatim
- *>
- *> \param[out] ASAV
- *> \verbatim
- *> ASAV is REAL array, dimension (NMAX*NMAX)
- *> \endverbatim
- *>
- *> \param[out] AFAC
- *> \verbatim
- *> AFAC is REAL array, dimension (NMAX*NMAX)
- *> \endverbatim
- *>
- *> \param[out] AINV
- *> \verbatim
- *> AINV is REAL array, dimension (NMAX*NMAX)
- *> \endverbatim
- *>
- *> \param[out] B
- *> \verbatim
- *> B is REAL array, dimension (NMAX*MAXRHS)
- *> \endverbatim
- *>
- *> \param[out] BSAV
- *> \verbatim
- *> BSAV is REAL array, dimension (NMAX*MAXRHS)
- *> \endverbatim
- *>
- *> \param[out] XACT
- *> \verbatim
- *> XACT is REAL array, dimension (NMAX*MAXRHS)
- *> \endverbatim
- *>
- *> \param[out] X
- *> \verbatim
- *> X is REAL array, dimension (NMAX*MAXRHS)
- *> \endverbatim
- *>
- *> \param[out] ARF
- *> \verbatim
- *> ARF is REAL array, dimension ((NMAX*(NMAX+1))/2)
- *> \endverbatim
- *>
- *> \param[out] ARFINV
- *> \verbatim
- *> ARFINV is REAL array, dimension ((NMAX*(NMAX+1))/2)
- *> \endverbatim
- *>
- *> \param[out] S_WORK_SLATMS
- *> \verbatim
- *> S_WORK_SLATMS is REAL array, dimension ( 3*NMAX )
- *> \endverbatim
- *>
- *> \param[out] S_WORK_SPOT01
- *> \verbatim
- *> S_WORK_SPOT01 is REAL array, dimension ( NMAX )
- *> \endverbatim
- *>
- *> \param[out] S_TEMP_SPOT02
- *> \verbatim
- *> S_TEMP_SPOT02 is REAL array, dimension ( NMAX*MAXRHS )
- *> \endverbatim
- *>
- *> \param[out] S_TEMP_SPOT03
- *> \verbatim
- *> S_TEMP_SPOT03 is REAL array, dimension ( NMAX*NMAX )
- *> \endverbatim
- *>
- *> \param[out] S_WORK_SLATMS
- *> \verbatim
- *> S_WORK_SLATMS is REAL array, dimension ( NMAX )
- *> \endverbatim
- *>
- *> \param[out] S_WORK_SLANSY
- *> \verbatim
- *> S_WORK_SLANSY is REAL array, dimension ( NMAX )
- *> \endverbatim
- *>
- *> \param[out] S_WORK_SPOT02
- *> \verbatim
- *> S_WORK_SPOT02 is REAL array, dimension ( NMAX )
- *> \endverbatim
- *>
- *> \param[out] S_WORK_SPOT03
- *> \verbatim
- *> S_WORK_SPOT03 is REAL array, dimension ( NMAX )
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date November 2013
- *
- *> \ingroup single_lin
- *
- * =====================================================================
- SUBROUTINE SDRVRFP( NOUT, NN, NVAL, NNS, NSVAL, NNT, NTVAL,
- + THRESH, A, ASAV, AFAC, AINV, B,
- + BSAV, XACT, X, ARF, ARFINV,
- + S_WORK_SLATMS, S_WORK_SPOT01, S_TEMP_SPOT02,
- + S_TEMP_SPOT03, S_WORK_SLANSY,
- + S_WORK_SPOT02, S_WORK_SPOT03 )
- *
- * -- LAPACK test routine (version 3.5.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * November 2013
- *
- * .. Scalar Arguments ..
- INTEGER NN, NNS, NNT, NOUT
- REAL THRESH
- * ..
- * .. Array Arguments ..
- INTEGER NVAL( NN ), NSVAL( NNS ), NTVAL( NNT )
- REAL A( * )
- REAL AINV( * )
- REAL ASAV( * )
- REAL B( * )
- REAL BSAV( * )
- REAL AFAC( * )
- REAL ARF( * )
- REAL ARFINV( * )
- REAL XACT( * )
- REAL X( * )
- REAL S_WORK_SLATMS( * )
- REAL S_WORK_SPOT01( * )
- REAL S_TEMP_SPOT02( * )
- REAL S_TEMP_SPOT03( * )
- REAL S_WORK_SLANSY( * )
- REAL S_WORK_SPOT02( * )
- REAL S_WORK_SPOT03( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ONE, ZERO
- PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
- INTEGER NTESTS
- PARAMETER ( NTESTS = 4 )
- * ..
- * .. Local Scalars ..
- LOGICAL ZEROT
- INTEGER I, INFO, IUPLO, LDA, LDB, IMAT, NERRS, NFAIL,
- + NRHS, NRUN, IZERO, IOFF, K, NT, N, IFORM, IIN,
- + IIT, IIS
- CHARACTER DIST, CTYPE, UPLO, CFORM
- INTEGER KL, KU, MODE
- REAL ANORM, AINVNM, CNDNUM, RCONDC
- * ..
- * .. Local Arrays ..
- CHARACTER UPLOS( 2 ), FORMS( 2 )
- INTEGER ISEED( 4 ), ISEEDY( 4 )
- REAL RESULT( NTESTS )
- * ..
- * .. External Functions ..
- REAL SLANSY
- EXTERNAL SLANSY
- * ..
- * .. External Subroutines ..
- EXTERNAL ALADHD, ALAERH, ALASVM, SGET04, STFTTR, SLACPY,
- + SLARHS, SLATB4, SLATMS, SPFTRI, SPFTRF, SPFTRS,
- + SPOT01, SPOT02, SPOT03, SPOTRI, SPOTRF, STRTTF
- * ..
- * .. Scalars in Common ..
- CHARACTER*32 SRNAMT
- * ..
- * .. Common blocks ..
- COMMON / SRNAMC / SRNAMT
- * ..
- * .. Data statements ..
- DATA ISEEDY / 1988, 1989, 1990, 1991 /
- DATA UPLOS / 'U', 'L' /
- DATA FORMS / 'N', 'T' /
- * ..
- * .. Executable Statements ..
- *
- * Initialize constants and the random number seed.
- *
- NRUN = 0
- NFAIL = 0
- NERRS = 0
- DO 10 I = 1, 4
- ISEED( I ) = ISEEDY( I )
- 10 CONTINUE
- *
- DO 130 IIN = 1, NN
- *
- N = NVAL( IIN )
- LDA = MAX( N, 1 )
- LDB = MAX( N, 1 )
- *
- DO 980 IIS = 1, NNS
- *
- NRHS = NSVAL( IIS )
- *
- DO 120 IIT = 1, NNT
- *
- IMAT = NTVAL( IIT )
- *
- * If N.EQ.0, only consider the first type
- *
- IF( N.EQ.0 .AND. IIT.GE.1 ) GO TO 120
- *
- * Skip types 3, 4, or 5 if the matrix size is too small.
- *
- IF( IMAT.EQ.4 .AND. N.LE.1 ) GO TO 120
- IF( IMAT.EQ.5 .AND. N.LE.2 ) GO TO 120
- *
- * Do first for UPLO = 'U', then for UPLO = 'L'
- *
- DO 110 IUPLO = 1, 2
- UPLO = UPLOS( IUPLO )
- *
- * Do first for CFORM = 'N', then for CFORM = 'C'
- *
- DO 100 IFORM = 1, 2
- CFORM = FORMS( IFORM )
- *
- * Set up parameters with SLATB4 and generate a test
- * matrix with SLATMS.
- *
- CALL SLATB4( 'SPO', IMAT, N, N, CTYPE, KL, KU,
- + ANORM, MODE, CNDNUM, DIST )
- *
- SRNAMT = 'SLATMS'
- CALL SLATMS( N, N, DIST, ISEED, CTYPE,
- + S_WORK_SLATMS,
- + MODE, CNDNUM, ANORM, KL, KU, UPLO, A,
- + LDA, S_WORK_SLATMS, INFO )
- *
- * Check error code from SLATMS.
- *
- IF( INFO.NE.0 ) THEN
- CALL ALAERH( 'SPF', 'SLATMS', INFO, 0, UPLO, N,
- + N, -1, -1, -1, IIT, NFAIL, NERRS,
- + NOUT )
- GO TO 100
- END IF
- *
- * For types 3-5, zero one row and column of the matrix to
- * test that INFO is returned correctly.
- *
- ZEROT = IMAT.GE.3 .AND. IMAT.LE.5
- IF( ZEROT ) THEN
- IF( IIT.EQ.3 ) THEN
- IZERO = 1
- ELSE IF( IIT.EQ.4 ) THEN
- IZERO = N
- ELSE
- IZERO = N / 2 + 1
- END IF
- IOFF = ( IZERO-1 )*LDA
- *
- * Set row and column IZERO of A to 0.
- *
- IF( IUPLO.EQ.1 ) THEN
- DO 20 I = 1, IZERO - 1
- A( IOFF+I ) = ZERO
- 20 CONTINUE
- IOFF = IOFF + IZERO
- DO 30 I = IZERO, N
- A( IOFF ) = ZERO
- IOFF = IOFF + LDA
- 30 CONTINUE
- ELSE
- IOFF = IZERO
- DO 40 I = 1, IZERO - 1
- A( IOFF ) = ZERO
- IOFF = IOFF + LDA
- 40 CONTINUE
- IOFF = IOFF - IZERO
- DO 50 I = IZERO, N
- A( IOFF+I ) = ZERO
- 50 CONTINUE
- END IF
- ELSE
- IZERO = 0
- END IF
- *
- * Save a copy of the matrix A in ASAV.
- *
- CALL SLACPY( UPLO, N, N, A, LDA, ASAV, LDA )
- *
- * Compute the condition number of A (RCONDC).
- *
- IF( ZEROT ) THEN
- RCONDC = ZERO
- ELSE
- *
- * Compute the 1-norm of A.
- *
- ANORM = SLANSY( '1', UPLO, N, A, LDA,
- + S_WORK_SLANSY )
- *
- * Factor the matrix A.
- *
- CALL SPOTRF( UPLO, N, A, LDA, INFO )
- *
- * Form the inverse of A.
- *
- CALL SPOTRI( UPLO, N, A, LDA, INFO )
-
- IF ( N .NE. 0 ) THEN
- *
- * Compute the 1-norm condition number of A.
- *
- AINVNM = SLANSY( '1', UPLO, N, A, LDA,
- + S_WORK_SLANSY )
- RCONDC = ( ONE / ANORM ) / AINVNM
- *
- * Restore the matrix A.
- *
- CALL SLACPY( UPLO, N, N, ASAV, LDA, A, LDA )
- END IF
- *
- END IF
- *
- * Form an exact solution and set the right hand side.
- *
- SRNAMT = 'SLARHS'
- CALL SLARHS( 'SPO', 'N', UPLO, ' ', N, N, KL, KU,
- + NRHS, A, LDA, XACT, LDA, B, LDA,
- + ISEED, INFO )
- CALL SLACPY( 'Full', N, NRHS, B, LDA, BSAV, LDA )
- *
- * Compute the L*L' or U'*U factorization of the
- * matrix and solve the system.
- *
- CALL SLACPY( UPLO, N, N, A, LDA, AFAC, LDA )
- CALL SLACPY( 'Full', N, NRHS, B, LDB, X, LDB )
- *
- SRNAMT = 'STRTTF'
- CALL STRTTF( CFORM, UPLO, N, AFAC, LDA, ARF, INFO )
- SRNAMT = 'SPFTRF'
- CALL SPFTRF( CFORM, UPLO, N, ARF, INFO )
- *
- * Check error code from SPFTRF.
- *
- IF( INFO.NE.IZERO ) THEN
- *
- * LANGOU: there is a small hick here: IZERO should
- * always be INFO however if INFO is ZERO, ALAERH does not
- * complain.
- *
- CALL ALAERH( 'SPF', 'SPFSV ', INFO, IZERO,
- + UPLO, N, N, -1, -1, NRHS, IIT,
- + NFAIL, NERRS, NOUT )
- GO TO 100
- END IF
- *
- * Skip the tests if INFO is not 0.
- *
- IF( INFO.NE.0 ) THEN
- GO TO 100
- END IF
- *
- SRNAMT = 'SPFTRS'
- CALL SPFTRS( CFORM, UPLO, N, NRHS, ARF, X, LDB,
- + INFO )
- *
- SRNAMT = 'STFTTR'
- CALL STFTTR( CFORM, UPLO, N, ARF, AFAC, LDA, INFO )
- *
- * Reconstruct matrix from factors and compute
- * residual.
- *
- CALL SLACPY( UPLO, N, N, AFAC, LDA, ASAV, LDA )
- CALL SPOT01( UPLO, N, A, LDA, AFAC, LDA,
- + S_WORK_SPOT01, RESULT( 1 ) )
- CALL SLACPY( UPLO, N, N, ASAV, LDA, AFAC, LDA )
- *
- * Form the inverse and compute the residual.
- *
- IF(MOD(N,2).EQ.0)THEN
- CALL SLACPY( 'A', N+1, N/2, ARF, N+1, ARFINV,
- + N+1 )
- ELSE
- CALL SLACPY( 'A', N, (N+1)/2, ARF, N, ARFINV,
- + N )
- END IF
- *
- SRNAMT = 'SPFTRI'
- CALL SPFTRI( CFORM, UPLO, N, ARFINV , INFO )
- *
- SRNAMT = 'STFTTR'
- CALL STFTTR( CFORM, UPLO, N, ARFINV, AINV, LDA,
- + INFO )
- *
- * Check error code from SPFTRI.
- *
- IF( INFO.NE.0 )
- + CALL ALAERH( 'SPO', 'SPFTRI', INFO, 0, UPLO, N,
- + N, -1, -1, -1, IMAT, NFAIL, NERRS,
- + NOUT )
- *
- CALL SPOT03( UPLO, N, A, LDA, AINV, LDA,
- + S_TEMP_SPOT03, LDA, S_WORK_SPOT03,
- + RCONDC, RESULT( 2 ) )
- *
- * Compute residual of the computed solution.
- *
- CALL SLACPY( 'Full', N, NRHS, B, LDA,
- + S_TEMP_SPOT02, LDA )
- CALL SPOT02( UPLO, N, NRHS, A, LDA, X, LDA,
- + S_TEMP_SPOT02, LDA, S_WORK_SPOT02,
- + RESULT( 3 ) )
- *
- * Check solution from generated exact solution.
-
- CALL SGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
- + RESULT( 4 ) )
- NT = 4
- *
- * Print information about the tests that did not
- * pass the threshold.
- *
- DO 60 K = 1, NT
- IF( RESULT( K ).GE.THRESH ) THEN
- IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
- + CALL ALADHD( NOUT, 'SPF' )
- WRITE( NOUT, FMT = 9999 )'SPFSV ', UPLO,
- + N, IIT, K, RESULT( K )
- NFAIL = NFAIL + 1
- END IF
- 60 CONTINUE
- NRUN = NRUN + NT
- 100 CONTINUE
- 110 CONTINUE
- 120 CONTINUE
- 980 CONTINUE
- 130 CONTINUE
- *
- * Print a summary of the results.
- *
- CALL ALASVM( 'SPF', NOUT, NFAIL, NRUN, NERRS )
- *
- 9999 FORMAT( 1X, A6, ', UPLO=''', A1, ''', N =', I5, ', type ', I1,
- + ', test(', I1, ')=', G12.5 )
- *
- RETURN
- *
- * End of SDRVRFP
- *
- END
|