|
- *> \brief \b DTRT01
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DTRT01( UPLO, DIAG, N, A, LDA, AINV, LDAINV, RCOND,
- * WORK, RESID )
- *
- * .. Scalar Arguments ..
- * CHARACTER DIAG, UPLO
- * INTEGER LDA, LDAINV, N
- * DOUBLE PRECISION RCOND, RESID
- * ..
- * .. Array Arguments ..
- * DOUBLE PRECISION A( LDA, * ), AINV( LDAINV, * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DTRT01 computes the residual for a triangular matrix A times its
- *> inverse:
- *> RESID = norm( A*AINV - I ) / ( N * norm(A) * norm(AINV) * EPS ),
- *> where EPS is the machine epsilon.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> Specifies whether the matrix A is upper or lower triangular.
- *> = 'U': Upper triangular
- *> = 'L': Lower triangular
- *> \endverbatim
- *>
- *> \param[in] DIAG
- *> \verbatim
- *> DIAG is CHARACTER*1
- *> Specifies whether or not the matrix A is unit triangular.
- *> = 'N': Non-unit triangular
- *> = 'U': Unit triangular
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is DOUBLE PRECISION array, dimension (LDA,N)
- *> The triangular matrix A. If UPLO = 'U', the leading n by n
- *> upper triangular part of the array A contains the upper
- *> triangular matrix, and the strictly lower triangular part of
- *> A is not referenced. If UPLO = 'L', the leading n by n lower
- *> triangular part of the array A contains the lower triangular
- *> matrix, and the strictly upper triangular part of A is not
- *> referenced. If DIAG = 'U', the diagonal elements of A are
- *> also not referenced and are assumed to be 1.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in,out] AINV
- *> \verbatim
- *> AINV is DOUBLE PRECISION array, dimension (LDAINV,N)
- *> On entry, the (triangular) inverse of the matrix A, in the
- *> same storage format as A.
- *> On exit, the contents of AINV are destroyed.
- *> \endverbatim
- *>
- *> \param[in] LDAINV
- *> \verbatim
- *> LDAINV is INTEGER
- *> The leading dimension of the array AINV. LDAINV >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] RCOND
- *> \verbatim
- *> RCOND is DOUBLE PRECISION
- *> The reciprocal condition number of A, computed as
- *> 1/(norm(A) * norm(AINV)).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is DOUBLE PRECISION array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] RESID
- *> \verbatim
- *> RESID is DOUBLE PRECISION
- *> norm(A*AINV - I) / ( N * norm(A) * norm(AINV) * EPS )
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date November 2011
- *
- *> \ingroup double_lin
- *
- * =====================================================================
- SUBROUTINE DTRT01( UPLO, DIAG, N, A, LDA, AINV, LDAINV, RCOND,
- $ WORK, RESID )
- *
- * -- LAPACK test routine (version 3.4.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * November 2011
- *
- * .. Scalar Arguments ..
- CHARACTER DIAG, UPLO
- INTEGER LDA, LDAINV, N
- DOUBLE PRECISION RCOND, RESID
- * ..
- * .. Array Arguments ..
- DOUBLE PRECISION A( LDA, * ), AINV( LDAINV, * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ZERO, ONE
- PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
- * ..
- * .. Local Scalars ..
- INTEGER J
- DOUBLE PRECISION AINVNM, ANORM, EPS
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- DOUBLE PRECISION DLAMCH, DLANTR
- EXTERNAL LSAME, DLAMCH, DLANTR
- * ..
- * .. External Subroutines ..
- EXTERNAL DTRMV
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC DBLE
- * ..
- * .. Executable Statements ..
- *
- * Quick exit if N = 0
- *
- IF( N.LE.0 ) THEN
- RCOND = ONE
- RESID = ZERO
- RETURN
- END IF
- *
- * Exit with RESID = 1/EPS if ANORM = 0 or AINVNM = 0.
- *
- EPS = DLAMCH( 'Epsilon' )
- ANORM = DLANTR( '1', UPLO, DIAG, N, N, A, LDA, WORK )
- AINVNM = DLANTR( '1', UPLO, DIAG, N, N, AINV, LDAINV, WORK )
- IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
- RCOND = ZERO
- RESID = ONE / EPS
- RETURN
- END IF
- RCOND = ( ONE / ANORM ) / AINVNM
- *
- * Set the diagonal of AINV to 1 if AINV has unit diagonal.
- *
- IF( LSAME( DIAG, 'U' ) ) THEN
- DO 10 J = 1, N
- AINV( J, J ) = ONE
- 10 CONTINUE
- END IF
- *
- * Compute A * AINV, overwriting AINV.
- *
- IF( LSAME( UPLO, 'U' ) ) THEN
- DO 20 J = 1, N
- CALL DTRMV( 'Upper', 'No transpose', DIAG, J, A, LDA,
- $ AINV( 1, J ), 1 )
- 20 CONTINUE
- ELSE
- DO 30 J = 1, N
- CALL DTRMV( 'Lower', 'No transpose', DIAG, N-J+1, A( J, J ),
- $ LDA, AINV( J, J ), 1 )
- 30 CONTINUE
- END IF
- *
- * Subtract 1 from each diagonal element to form A*AINV - I.
- *
- DO 40 J = 1, N
- AINV( J, J ) = AINV( J, J ) - ONE
- 40 CONTINUE
- *
- * Compute norm(A*AINV - I) / (N * norm(A) * norm(AINV) * EPS)
- *
- RESID = DLANTR( '1', UPLO, 'Non-unit', N, N, AINV, LDAINV, WORK )
- *
- RESID = ( ( RESID*RCOND ) / DBLE( N ) ) / EPS
- *
- RETURN
- *
- * End of DTRT01
- *
- END
|