|
- *> \brief \b CLQT01
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CLQT01( M, N, A, AF, Q, L, LDA, TAU, WORK, LWORK,
- * RWORK, RESULT )
- *
- * .. Scalar Arguments ..
- * INTEGER LDA, LWORK, M, N
- * ..
- * .. Array Arguments ..
- * REAL RESULT( * ), RWORK( * )
- * COMPLEX A( LDA, * ), AF( LDA, * ), L( LDA, * ),
- * $ Q( LDA, * ), TAU( * ), WORK( LWORK )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CLQT01 tests CGELQF, which computes the LQ factorization of an m-by-n
- *> matrix A, and partially tests CUNGLQ which forms the n-by-n
- *> orthogonal matrix Q.
- *>
- *> CLQT01 compares L with A*Q', and checks that Q is orthogonal.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the matrix A. M >= 0.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is COMPLEX array, dimension (LDA,N)
- *> The m-by-n matrix A.
- *> \endverbatim
- *>
- *> \param[out] AF
- *> \verbatim
- *> AF is COMPLEX array, dimension (LDA,N)
- *> Details of the LQ factorization of A, as returned by CGELQF.
- *> See CGELQF for further details.
- *> \endverbatim
- *>
- *> \param[out] Q
- *> \verbatim
- *> Q is COMPLEX array, dimension (LDA,N)
- *> The n-by-n orthogonal matrix Q.
- *> \endverbatim
- *>
- *> \param[out] L
- *> \verbatim
- *> L is COMPLEX array, dimension (LDA,max(M,N))
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the arrays A, AF, Q and L.
- *> LDA >= max(M,N).
- *> \endverbatim
- *>
- *> \param[out] TAU
- *> \verbatim
- *> TAU is COMPLEX array, dimension (min(M,N))
- *> The scalar factors of the elementary reflectors, as returned
- *> by CGELQF.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX array, dimension (LWORK)
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The dimension of the array WORK.
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is REAL array, dimension (max(M,N))
- *> \endverbatim
- *>
- *> \param[out] RESULT
- *> \verbatim
- *> RESULT is REAL array, dimension (2)
- *> The test ratios:
- *> RESULT(1) = norm( L - A*Q' ) / ( N * norm(A) * EPS )
- *> RESULT(2) = norm( I - Q*Q' ) / ( N * EPS )
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date November 2011
- *
- *> \ingroup complex_lin
- *
- * =====================================================================
- SUBROUTINE CLQT01( M, N, A, AF, Q, L, LDA, TAU, WORK, LWORK,
- $ RWORK, RESULT )
- *
- * -- LAPACK test routine (version 3.4.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * November 2011
- *
- * .. Scalar Arguments ..
- INTEGER LDA, LWORK, M, N
- * ..
- * .. Array Arguments ..
- REAL RESULT( * ), RWORK( * )
- COMPLEX A( LDA, * ), AF( LDA, * ), L( LDA, * ),
- $ Q( LDA, * ), TAU( * ), WORK( LWORK )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ZERO, ONE
- PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
- COMPLEX ROGUE
- PARAMETER ( ROGUE = ( -1.0E+10, -1.0E+10 ) )
- * ..
- * .. Local Scalars ..
- INTEGER INFO, MINMN
- REAL ANORM, EPS, RESID
- * ..
- * .. External Functions ..
- REAL CLANGE, CLANSY, SLAMCH
- EXTERNAL CLANGE, CLANSY, SLAMCH
- * ..
- * .. External Subroutines ..
- EXTERNAL CGELQF, CGEMM, CHERK, CLACPY, CLASET, CUNGLQ
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC CMPLX, MAX, MIN, REAL
- * ..
- * .. Scalars in Common ..
- CHARACTER*32 SRNAMT
- * ..
- * .. Common blocks ..
- COMMON / SRNAMC / SRNAMT
- * ..
- * .. Executable Statements ..
- *
- MINMN = MIN( M, N )
- EPS = SLAMCH( 'Epsilon' )
- *
- * Copy the matrix A to the array AF.
- *
- CALL CLACPY( 'Full', M, N, A, LDA, AF, LDA )
- *
- * Factorize the matrix A in the array AF.
- *
- SRNAMT = 'CGELQF'
- CALL CGELQF( M, N, AF, LDA, TAU, WORK, LWORK, INFO )
- *
- * Copy details of Q
- *
- CALL CLASET( 'Full', N, N, ROGUE, ROGUE, Q, LDA )
- IF( N.GT.1 )
- $ CALL CLACPY( 'Upper', M, N-1, AF( 1, 2 ), LDA, Q( 1, 2 ), LDA )
- *
- * Generate the n-by-n matrix Q
- *
- SRNAMT = 'CUNGLQ'
- CALL CUNGLQ( N, N, MINMN, Q, LDA, TAU, WORK, LWORK, INFO )
- *
- * Copy L
- *
- CALL CLASET( 'Full', M, N, CMPLX( ZERO ), CMPLX( ZERO ), L, LDA )
- CALL CLACPY( 'Lower', M, N, AF, LDA, L, LDA )
- *
- * Compute L - A*Q'
- *
- CALL CGEMM( 'No transpose', 'Conjugate transpose', M, N, N,
- $ CMPLX( -ONE ), A, LDA, Q, LDA, CMPLX( ONE ), L, LDA )
- *
- * Compute norm( L - Q'*A ) / ( N * norm(A) * EPS ) .
- *
- ANORM = CLANGE( '1', M, N, A, LDA, RWORK )
- RESID = CLANGE( '1', M, N, L, LDA, RWORK )
- IF( ANORM.GT.ZERO ) THEN
- RESULT( 1 ) = ( ( RESID / REAL( MAX( 1, N ) ) ) / ANORM ) / EPS
- ELSE
- RESULT( 1 ) = ZERO
- END IF
- *
- * Compute I - Q*Q'
- *
- CALL CLASET( 'Full', N, N, CMPLX( ZERO ), CMPLX( ONE ), L, LDA )
- CALL CHERK( 'Upper', 'No transpose', N, N, -ONE, Q, LDA, ONE, L,
- $ LDA )
- *
- * Compute norm( I - Q*Q' ) / ( N * EPS ) .
- *
- RESID = CLANSY( '1', 'Upper', N, L, LDA, RWORK )
- *
- RESULT( 2 ) = ( RESID / REAL( MAX( 1, N ) ) ) / EPS
- *
- RETURN
- *
- * End of CLQT01
- *
- END
|