|
- *> \brief \b CHET01
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CHET01( UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, C, LDC,
- * RWORK, RESID )
- *
- * .. Scalar Arguments ..
- * CHARACTER UPLO
- * INTEGER LDA, LDAFAC, LDC, N
- * REAL RESID
- * ..
- * .. Array Arguments ..
- * INTEGER IPIV( * )
- * REAL RWORK( * )
- * COMPLEX A( LDA, * ), AFAC( LDAFAC, * ), C( LDC, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CHET01 reconstructs a Hermitian indefinite matrix A from its
- *> block L*D*L' or U*D*U' factorization and computes the residual
- *> norm( C - A ) / ( N * norm(A) * EPS ),
- *> where C is the reconstructed matrix, EPS is the machine epsilon,
- *> L' is the conjugate transpose of L, and U' is the conjugate transpose
- *> of U.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> Specifies whether the upper or lower triangular part of the
- *> Hermitian matrix A is stored:
- *> = 'U': Upper triangular
- *> = 'L': Lower triangular
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of rows and columns of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is COMPLEX array, dimension (LDA,N)
- *> The original Hermitian matrix A.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,N)
- *> \endverbatim
- *>
- *> \param[in] AFAC
- *> \verbatim
- *> AFAC is COMPLEX array, dimension (LDAFAC,N)
- *> The factored form of the matrix A. AFAC contains the block
- *> diagonal matrix D and the multipliers used to obtain the
- *> factor L or U from the block L*D*L' or U*D*U' factorization
- *> as computed by CHETRF.
- *> \endverbatim
- *>
- *> \param[in] LDAFAC
- *> \verbatim
- *> LDAFAC is INTEGER
- *> The leading dimension of the array AFAC. LDAFAC >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in] IPIV
- *> \verbatim
- *> IPIV is INTEGER array, dimension (N)
- *> The pivot indices from CHETRF.
- *> \endverbatim
- *>
- *> \param[out] C
- *> \verbatim
- *> C is COMPLEX array, dimension (LDC,N)
- *> \endverbatim
- *>
- *> \param[in] LDC
- *> \verbatim
- *> LDC is INTEGER
- *> The leading dimension of the array C. LDC >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is REAL array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] RESID
- *> \verbatim
- *> RESID is REAL
- *> If UPLO = 'L', norm(L*D*L' - A) / ( N * norm(A) * EPS )
- *> If UPLO = 'U', norm(U*D*U' - A) / ( N * norm(A) * EPS )
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date November 2013
- *
- *> \ingroup complex_lin
- *
- * =====================================================================
- SUBROUTINE CHET01( UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, C, LDC,
- $ RWORK, RESID )
- *
- * -- LAPACK test routine (version 3.5.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * November 2013
- *
- * .. Scalar Arguments ..
- CHARACTER UPLO
- INTEGER LDA, LDAFAC, LDC, N
- REAL RESID
- * ..
- * .. Array Arguments ..
- INTEGER IPIV( * )
- REAL RWORK( * )
- COMPLEX A( LDA, * ), AFAC( LDAFAC, * ), C( LDC, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ZERO, ONE
- PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
- COMPLEX CZERO, CONE
- PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ),
- $ CONE = ( 1.0E+0, 0.0E+0 ) )
- * ..
- * .. Local Scalars ..
- INTEGER I, INFO, J
- REAL ANORM, EPS
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- REAL CLANHE, SLAMCH
- EXTERNAL LSAME, CLANHE, SLAMCH
- * ..
- * .. External Subroutines ..
- EXTERNAL CLAVHE, CLASET
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC AIMAG, REAL
- * ..
- * .. Executable Statements ..
- *
- * Quick exit if N = 0.
- *
- IF( N.LE.0 ) THEN
- RESID = ZERO
- RETURN
- END IF
- *
- * Determine EPS and the norm of A.
- *
- EPS = SLAMCH( 'Epsilon' )
- ANORM = CLANHE( '1', UPLO, N, A, LDA, RWORK )
- *
- * Check the imaginary parts of the diagonal elements and return with
- * an error code if any are nonzero.
- *
- DO 10 J = 1, N
- IF( AIMAG( AFAC( J, J ) ).NE.ZERO ) THEN
- RESID = ONE / EPS
- RETURN
- END IF
- 10 CONTINUE
- *
- * Initialize C to the identity matrix.
- *
- CALL CLASET( 'Full', N, N, CZERO, CONE, C, LDC )
- *
- * Call CLAVHE to form the product D * U' (or D * L' ).
- *
- CALL CLAVHE( UPLO, 'Conjugate', 'Non-unit', N, N, AFAC, LDAFAC,
- $ IPIV, C, LDC, INFO )
- *
- * Call CLAVHE again to multiply by U (or L ).
- *
- CALL CLAVHE( UPLO, 'No transpose', 'Unit', N, N, AFAC, LDAFAC,
- $ IPIV, C, LDC, INFO )
- *
- * Compute the difference C - A .
- *
- IF( LSAME( UPLO, 'U' ) ) THEN
- DO 30 J = 1, N
- DO 20 I = 1, J - 1
- C( I, J ) = C( I, J ) - A( I, J )
- 20 CONTINUE
- C( J, J ) = C( J, J ) - REAL( A( J, J ) )
- 30 CONTINUE
- ELSE
- DO 50 J = 1, N
- C( J, J ) = C( J, J ) - REAL( A( J, J ) )
- DO 40 I = J + 1, N
- C( I, J ) = C( I, J ) - A( I, J )
- 40 CONTINUE
- 50 CONTINUE
- END IF
- *
- * Compute norm( C - A ) / ( N * norm(A) * EPS )
- *
- RESID = CLANHE( '1', UPLO, N, C, LDC, RWORK )
- *
- IF( ANORM.LE.ZERO ) THEN
- IF( RESID.NE.ZERO )
- $ RESID = ONE / EPS
- ELSE
- RESID = ( ( RESID / REAL( N ) ) / ANORM ) / EPS
- END IF
- *
- RETURN
- *
- * End of CHET01
- *
- END
|