|
- /* the direct sgemm code written by Arjan van der Ven */
- #include "common.h"
-
- #if defined(SKYLAKEX) || defined (COOPERLAKE) || defined (SAPPHIRERAPIDS)
-
- #include <immintrin.h>
-
-
- /*
- * "Direct sgemm" code. This code operates directly on the inputs and outputs
- * of the sgemm call, avoiding the copies, memory realignments and threading,
- * and only supports alpha = 1 and beta = 0.
- * This is a common case and provides value for relatively small matrixes.
- * For larger matrixes the "regular" sgemm code is superior, there the cost of
- * copying/shuffling the B matrix really pays off.
- */
-
-
-
- #define DECLARE_RESULT_512(N,M) __m512 result##N##M = _mm512_setzero_ps()
- #define BROADCAST_LOAD_A_512(N,M) __m512 Aval##M = _mm512_broadcastss_ps(_mm_load_ss(&A[k + strideA * (i+M)]))
- #define LOAD_B_512(N,M) __m512 Bval##N = _mm512_loadu_ps(&B[strideB * k + j + (N*16)])
- #define MATMUL_512(N,M) result##N##M = _mm512_fmadd_ps(Aval##M, Bval##N , result##N##M)
- #define STORE_512(N,M) _mm512_storeu_ps(&R[(i+M) * strideR + j+(N*16)], result##N##M)
-
-
- #define DECLARE_RESULT_256(N,M) __m256 result##N##M = _mm256_setzero_ps()
- #define BROADCAST_LOAD_A_256(N,M) __m256 Aval##M = _mm256_broadcastss_ps(_mm_load_ss(&A[k + strideA * (i+M)]))
- #define LOAD_B_256(N,M) __m256 Bval##N = _mm256_loadu_ps(&B[strideB * k + j + (N*8)])
- #define MATMUL_256(N,M) result##N##M = _mm256_fmadd_ps(Aval##M, Bval##N , result##N##M)
- #define STORE_256(N,M) _mm256_storeu_ps(&R[(i+M) * strideR + j+(N*8)], result##N##M)
-
- #define DECLARE_RESULT_128(N,M) __m128 result##N##M = _mm_setzero_ps()
- #define BROADCAST_LOAD_A_128(N,M) __m128 Aval##M = _mm_broadcastss_ps(_mm_load_ss(&A[k + strideA * (i+M)]))
- #define LOAD_B_128(N,M) __m128 Bval##N = _mm_loadu_ps(&B[strideB * k + j + (N*4)])
- #define MATMUL_128(N,M) result##N##M = _mm_fmadd_ps(Aval##M, Bval##N , result##N##M)
- #define STORE_128(N,M) _mm_storeu_ps(&R[(i+M) * strideR + j+(N*4)], result##N##M)
-
- #define DECLARE_RESULT_SCALAR(N,M) float result##N##M = 0;
- #define BROADCAST_LOAD_A_SCALAR(N,M) float Aval##M = A[k + strideA * (i + M)];
- #define LOAD_B_SCALAR(N,M) float Bval##N = B[k * strideB + j + N];
- #define MATMUL_SCALAR(N,M) result##N##M += Aval##M * Bval##N;
- #define STORE_SCALAR(N,M) R[(i+M) * strideR + j + N] = result##N##M;
-
- #if 0
- int sgemm_kernel_direct_performant(BLASLONG M, BLASLONG N, BLASLONG K)
- {
- unsigned long long mnk = M * N * K;
- /* large matrixes -> not performant */
- if (mnk >= 28 * 512 * 512)
- return 0;
-
- /*
- * if the B matrix is not a nice multiple if 4 we get many unaligned accesses,
- * and the regular sgemm copy/realignment of data pays off much quicker
- */
- if ((N & 3) != 0 && (mnk >= 8 * 512 * 512))
- return 0;
-
- #ifdef SMP
- /* if we can run multithreaded, the threading changes the based threshold */
- if (mnk > 2 * 350 * 512 && num_cpu_avail(3)> 1)
- return 0;
- #endif
-
- return 1;
- }
-
- #endif
-
- //void sgemm_kernel_direct (BLASLONG M, BLASLONG N, BLASLONG K, float * __restrict A, BLASLONG strideA, float * __restrict B, BLASLONG strideB , float * __restrict R, BLASLONG strideR)
- void CNAME (BLASLONG M, BLASLONG N, BLASLONG K, float * __restrict A, BLASLONG strideA, float * __restrict B, BLASLONG strideB , float * __restrict R, BLASLONG strideR)
- {
- int i, j, k;
-
- int m4 = M & ~3;
- int m2 = M & ~1;
-
- int n64 = N & ~63;
- int n32 = N & ~31;
- int n16 = N & ~15;
- int n8 = N & ~7;
- int n4 = N & ~3;
- int n2 = N & ~1;
-
- i = 0;
-
- for (i = 0; i < m4; i+=4) {
-
- for (j = 0; j < n64; j+= 64) {
- k = 0;
- DECLARE_RESULT_512(0, 0); DECLARE_RESULT_512(1, 0); DECLARE_RESULT_512(2, 0); DECLARE_RESULT_512(3, 0);
- DECLARE_RESULT_512(0, 1); DECLARE_RESULT_512(1, 1); DECLARE_RESULT_512(2, 1); DECLARE_RESULT_512(3, 1);
- DECLARE_RESULT_512(0, 2); DECLARE_RESULT_512(1, 2); DECLARE_RESULT_512(2, 2); DECLARE_RESULT_512(3, 2);
- DECLARE_RESULT_512(0, 3); DECLARE_RESULT_512(1, 3); DECLARE_RESULT_512(2, 3); DECLARE_RESULT_512(3, 3);
-
-
- for (k = 0; k < K; k++) {
- BROADCAST_LOAD_A_512(x, 0);
- BROADCAST_LOAD_A_512(x, 1);
- BROADCAST_LOAD_A_512(x, 2);
- BROADCAST_LOAD_A_512(x, 3);
-
- LOAD_B_512(0, x); LOAD_B_512(1, x); LOAD_B_512(2, x); LOAD_B_512(3, x);
-
- MATMUL_512(0, 0); MATMUL_512(1, 0); MATMUL_512(2, 0); MATMUL_512(3, 0);
- MATMUL_512(0, 1); MATMUL_512(1, 1); MATMUL_512(2, 1); MATMUL_512(3, 1);
- MATMUL_512(0, 2); MATMUL_512(1, 2); MATMUL_512(2, 2); MATMUL_512(3, 2);
- MATMUL_512(0, 3); MATMUL_512(1, 3); MATMUL_512(2, 3); MATMUL_512(3, 3);
- }
- STORE_512(0, 0); STORE_512(1, 0); STORE_512(2, 0); STORE_512(3, 0);
- STORE_512(0, 1); STORE_512(1, 1); STORE_512(2, 1); STORE_512(3, 1);
- STORE_512(0, 2); STORE_512(1, 2); STORE_512(2, 2); STORE_512(3, 2);
- STORE_512(0, 3); STORE_512(1, 3); STORE_512(2, 3); STORE_512(3, 3);
- }
-
- for (; j < n32; j+= 32) {
- DECLARE_RESULT_512(0, 0); DECLARE_RESULT_512(1, 0);
- DECLARE_RESULT_512(0, 1); DECLARE_RESULT_512(1, 1);
- DECLARE_RESULT_512(0, 2); DECLARE_RESULT_512(1, 2);
- DECLARE_RESULT_512(0, 3); DECLARE_RESULT_512(1, 3);
-
- for (k = 0; k < K; k++) {
- BROADCAST_LOAD_A_512(x, 0);
- BROADCAST_LOAD_A_512(x, 1);
- BROADCAST_LOAD_A_512(x, 2);
- BROADCAST_LOAD_A_512(x, 3);
-
- LOAD_B_512(0, x); LOAD_B_512(1, x);
-
- MATMUL_512(0, 0); MATMUL_512(1, 0);
- MATMUL_512(0, 1); MATMUL_512(1, 1);
- MATMUL_512(0, 2); MATMUL_512(1, 2);
- MATMUL_512(0, 3); MATMUL_512(1, 3);
- }
- STORE_512(0, 0); STORE_512(1, 0);
- STORE_512(0, 1); STORE_512(1, 1);
- STORE_512(0, 2); STORE_512(1, 2);
- STORE_512(0, 3); STORE_512(1, 3);
- }
-
- for (; j < n16; j+= 16) {
- DECLARE_RESULT_512(0, 0);
- DECLARE_RESULT_512(0, 1);
- DECLARE_RESULT_512(0, 2);
- DECLARE_RESULT_512(0, 3);
-
- for (k = 0; k < K; k++) {
- BROADCAST_LOAD_A_512(x, 0);
- BROADCAST_LOAD_A_512(x, 1);
- BROADCAST_LOAD_A_512(x, 2);
- BROADCAST_LOAD_A_512(x, 3);
-
- LOAD_B_512(0, x);
-
- MATMUL_512(0, 0);
- MATMUL_512(0, 1);
- MATMUL_512(0, 2);
- MATMUL_512(0, 3);
- }
- STORE_512(0, 0);
- STORE_512(0, 1);
- STORE_512(0, 2);
- STORE_512(0, 3);
- }
-
- for (; j < n8; j+= 8) {
- DECLARE_RESULT_256(0, 0);
- DECLARE_RESULT_256(0, 1);
- DECLARE_RESULT_256(0, 2);
- DECLARE_RESULT_256(0, 3);
-
- for (k = 0; k < K; k++) {
- BROADCAST_LOAD_A_256(x, 0);
- BROADCAST_LOAD_A_256(x, 1);
- BROADCAST_LOAD_A_256(x, 2);
- BROADCAST_LOAD_A_256(x, 3);
-
- LOAD_B_256(0, x);
-
- MATMUL_256(0, 0);
- MATMUL_256(0, 1);
- MATMUL_256(0, 2);
- MATMUL_256(0, 3);
- }
- STORE_256(0, 0);
- STORE_256(0, 1);
- STORE_256(0, 2);
- STORE_256(0, 3);
- }
-
- for (; j < n4; j+= 4) {
- DECLARE_RESULT_128(0, 0);
- DECLARE_RESULT_128(0, 1);
- DECLARE_RESULT_128(0, 2);
- DECLARE_RESULT_128(0, 3);
-
- for (k = 0; k < K; k++) {
- BROADCAST_LOAD_A_128(x, 0);
- BROADCAST_LOAD_A_128(x, 1);
- BROADCAST_LOAD_A_128(x, 2);
- BROADCAST_LOAD_A_128(x, 3);
-
- LOAD_B_128(0, x);
-
- MATMUL_128(0, 0);
- MATMUL_128(0, 1);
- MATMUL_128(0, 2);
- MATMUL_128(0, 3);
- }
- STORE_128(0, 0);
- STORE_128(0, 1);
- STORE_128(0, 2);
- STORE_128(0, 3);
- }
-
- for (; j < n2; j+= 2) {
- DECLARE_RESULT_SCALAR(0, 0); DECLARE_RESULT_SCALAR(1, 0);
- DECLARE_RESULT_SCALAR(0, 1); DECLARE_RESULT_SCALAR(1, 1);
- DECLARE_RESULT_SCALAR(0, 2); DECLARE_RESULT_SCALAR(1, 2);
- DECLARE_RESULT_SCALAR(0, 3); DECLARE_RESULT_SCALAR(1, 3);
-
- for (k = 0; k < K; k++) {
- BROADCAST_LOAD_A_SCALAR(x, 0);
- BROADCAST_LOAD_A_SCALAR(x, 1);
- BROADCAST_LOAD_A_SCALAR(x, 2);
- BROADCAST_LOAD_A_SCALAR(x, 3);
-
- LOAD_B_SCALAR(0, x); LOAD_B_SCALAR(1, x);
-
- MATMUL_SCALAR(0, 0); MATMUL_SCALAR(1, 0);
- MATMUL_SCALAR(0, 1); MATMUL_SCALAR(1, 1);
- MATMUL_SCALAR(0, 2); MATMUL_SCALAR(1, 2);
- MATMUL_SCALAR(0, 3); MATMUL_SCALAR(1, 3);
- }
- STORE_SCALAR(0, 0); STORE_SCALAR(1, 0);
- STORE_SCALAR(0, 1); STORE_SCALAR(1, 1);
- STORE_SCALAR(0, 2); STORE_SCALAR(1, 2);
- STORE_SCALAR(0, 3); STORE_SCALAR(1, 3);
- }
-
- for (; j < N; j++) {
- DECLARE_RESULT_SCALAR(0, 0)
- DECLARE_RESULT_SCALAR(0, 1)
- DECLARE_RESULT_SCALAR(0, 2)
- DECLARE_RESULT_SCALAR(0, 3)
-
- for (k = 0; k < K; k++) {
- BROADCAST_LOAD_A_SCALAR(0, 0);
- BROADCAST_LOAD_A_SCALAR(0, 1);
- BROADCAST_LOAD_A_SCALAR(0, 2);
- BROADCAST_LOAD_A_SCALAR(0, 3);
-
- LOAD_B_SCALAR(0, 0);
-
- MATMUL_SCALAR(0, 0);
- MATMUL_SCALAR(0, 1);
- MATMUL_SCALAR(0, 2);
- MATMUL_SCALAR(0, 3);
- }
- STORE_SCALAR(0, 0);
- STORE_SCALAR(0, 1);
- STORE_SCALAR(0, 2);
- STORE_SCALAR(0, 3);
- }
- }
-
- for (; i < m2; i+=2) {
- j = 0;
-
- for (; j < n64; j+= 64) {
- DECLARE_RESULT_512(0, 0); DECLARE_RESULT_512(1, 0); DECLARE_RESULT_512(2, 0); DECLARE_RESULT_512(3, 0);
- DECLARE_RESULT_512(0, 1); DECLARE_RESULT_512(1, 1); DECLARE_RESULT_512(2, 1); DECLARE_RESULT_512(3, 1);
-
-
- for (k = 0; k < K; k++) {
- BROADCAST_LOAD_A_512(x, 0);
- BROADCAST_LOAD_A_512(x, 1);
-
- LOAD_B_512(0, x); LOAD_B_512(1, x); LOAD_B_512(2, x); LOAD_B_512(3, x);
-
- MATMUL_512(0, 0); MATMUL_512(1, 0); MATMUL_512(2, 0); MATMUL_512(3, 0);
- MATMUL_512(0, 1); MATMUL_512(1, 1); MATMUL_512(2, 1); MATMUL_512(3, 1);
- }
- STORE_512(0, 0); STORE_512(1, 0); STORE_512(2, 0); STORE_512(3, 0);
- STORE_512(0, 1); STORE_512(1, 1); STORE_512(2, 1); STORE_512(3, 1);
- }
-
- for (; j < n32; j+= 32) {
- DECLARE_RESULT_512(0, 0); DECLARE_RESULT_512(1, 0);
- DECLARE_RESULT_512(0, 1); DECLARE_RESULT_512(1, 1);
-
- for (k = 0; k < K; k++) {
- BROADCAST_LOAD_A_512(x, 0);
- BROADCAST_LOAD_A_512(x, 1);
-
- LOAD_B_512(0, x); LOAD_B_512(1, x);
-
- MATMUL_512(0, 0); MATMUL_512(1, 0);
- MATMUL_512(0, 1); MATMUL_512(1, 1);
- }
- STORE_512(0, 0); STORE_512(1, 0);
- STORE_512(0, 1); STORE_512(1, 1);
- }
-
-
- for (; j < n16; j+= 16) {
- DECLARE_RESULT_512(0, 0);
- DECLARE_RESULT_512(0, 1);
-
- for (k = 0; k < K; k++) {
- BROADCAST_LOAD_A_512(x, 0);
- BROADCAST_LOAD_A_512(x, 1);
-
- LOAD_B_512(0, x);
-
- MATMUL_512(0, 0);
- MATMUL_512(0, 1);
- }
- STORE_512(0, 0);
- STORE_512(0, 1);
- }
-
- for (; j < n8; j+= 8) {
- DECLARE_RESULT_256(0, 0);
- DECLARE_RESULT_256(0, 1);
-
- for (k = 0; k < K; k++) {
- BROADCAST_LOAD_A_256(x, 0);
- BROADCAST_LOAD_A_256(x, 1);
-
- LOAD_B_256(0, x);
-
- MATMUL_256(0, 0);
- MATMUL_256(0, 1);
- }
- STORE_256(0, 0);
- STORE_256(0, 1);
- }
-
- for (; j < n4; j+= 4) {
- DECLARE_RESULT_128(0, 0);
- DECLARE_RESULT_128(0, 1);
-
- for (k = 0; k < K; k++) {
- BROADCAST_LOAD_A_128(x, 0);
- BROADCAST_LOAD_A_128(x, 1);
-
- LOAD_B_128(0, x);
-
- MATMUL_128(0, 0);
- MATMUL_128(0, 1);
- }
- STORE_128(0, 0);
- STORE_128(0, 1);
- }
- for (; j < n2; j+= 2) {
- DECLARE_RESULT_SCALAR(0, 0); DECLARE_RESULT_SCALAR(1, 0);
- DECLARE_RESULT_SCALAR(0, 1); DECLARE_RESULT_SCALAR(1, 1);
-
- for (k = 0; k < K; k++) {
- BROADCAST_LOAD_A_SCALAR(x, 0);
- BROADCAST_LOAD_A_SCALAR(x, 1);
-
- LOAD_B_SCALAR(0, x); LOAD_B_SCALAR(1, x);
-
- MATMUL_SCALAR(0, 0); MATMUL_SCALAR(1, 0);
- MATMUL_SCALAR(0, 1); MATMUL_SCALAR(1, 1);
- }
- STORE_SCALAR(0, 0); STORE_SCALAR(1, 0);
- STORE_SCALAR(0, 1); STORE_SCALAR(1, 1);
- }
-
- for (; j < N; j++) {
- DECLARE_RESULT_SCALAR(0, 0);
- DECLARE_RESULT_SCALAR(0, 1);
-
- for (k = 0; k < K; k++) {
- BROADCAST_LOAD_A_SCALAR(0, 0);
- BROADCAST_LOAD_A_SCALAR(0, 1);
-
- LOAD_B_SCALAR(0, 0);
-
- MATMUL_SCALAR(0, 0);
- MATMUL_SCALAR(0, 1);
- }
- STORE_SCALAR(0, 0);
- STORE_SCALAR(0, 1);
- }
- }
-
- for (; i < M; i+=1) {
- j = 0;
- for (; j < n64; j+= 64) {
- DECLARE_RESULT_512(0, 0); DECLARE_RESULT_512(1, 0); DECLARE_RESULT_512(2, 0); DECLARE_RESULT_512(3, 0);
-
- for (k = 0; k < K; k++) {
- BROADCAST_LOAD_A_512(x, 0);
- LOAD_B_512(0, x); LOAD_B_512(1, x); LOAD_B_512(2, x); LOAD_B_512(3, x);
- MATMUL_512(0, 0); MATMUL_512(1, 0); MATMUL_512(2, 0); MATMUL_512(3, 0);
- }
- STORE_512(0, 0); STORE_512(1, 0); STORE_512(2, 0); STORE_512(3, 0);
- }
- for (; j < n32; j+= 32) {
- DECLARE_RESULT_512(0, 0); DECLARE_RESULT_512(1, 0);
-
- for (k = 0; k < K; k++) {
- BROADCAST_LOAD_A_512(x, 0);
- LOAD_B_512(0, x); LOAD_B_512(1, x);
- MATMUL_512(0, 0); MATMUL_512(1, 0);
- }
- STORE_512(0, 0); STORE_512(1, 0);
- }
-
-
- for (; j < n16; j+= 16) {
- DECLARE_RESULT_512(0, 0);
-
- for (k = 0; k < K; k++) {
- BROADCAST_LOAD_A_512(x, 0);
-
- LOAD_B_512(0, x);
-
- MATMUL_512(0, 0);
- }
- STORE_512(0, 0);
- }
-
- for (; j < n8; j+= 8) {
- DECLARE_RESULT_256(0, 0);
-
- for (k = 0; k < K; k++) {
- BROADCAST_LOAD_A_256(x, 0);
- LOAD_B_256(0, x);
- MATMUL_256(0, 0);
- }
- STORE_256(0, 0);
- }
-
- for (; j < n4; j+= 4) {
- DECLARE_RESULT_128(0, 0);
-
- for (k = 0; k < K; k++) {
- BROADCAST_LOAD_A_128(x, 0);
- LOAD_B_128(0, x);
- MATMUL_128(0, 0);
- }
- STORE_128(0, 0);
- }
-
- for (; j < n2; j+= 2) {
- DECLARE_RESULT_SCALAR(0, 0); DECLARE_RESULT_SCALAR(1, 0);
-
- for (k = 0; k < K; k++) {
- BROADCAST_LOAD_A_SCALAR(x, 0);
- LOAD_B_SCALAR(0, 0); LOAD_B_SCALAR(1, 0);
- MATMUL_SCALAR(0, 0); MATMUL_SCALAR(1, 0);
- }
- STORE_SCALAR(0, 0); STORE_SCALAR(1, 0);
- }
-
- for (; j < N; j++) {
- DECLARE_RESULT_SCALAR(0, 0);
-
- for (k = 0; k < K; k++) {
- BROADCAST_LOAD_A_SCALAR(0, 0);
- LOAD_B_SCALAR(0, 0);
- MATMUL_SCALAR(0, 0);
- }
- STORE_SCALAR(0, 0);
- }
- }
- }
- #else
-
- void CNAME (BLASLONG M, BLASLONG N, BLASLONG K, float * __restrict A, BLASLONG strideA, float * __restrict B, BLASLONG strideB , float * __restrict R, BLASLONG strideR)
- {}
- #endif
|