|
- *> \brief \b CDRVHEX
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CDRVHE( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX,
- * A, AFAC, AINV, B, X, XACT, WORK, RWORK, IWORK,
- * NOUT )
- *
- * .. Scalar Arguments ..
- * LOGICAL TSTERR
- * INTEGER NMAX, NN, NOUT, NRHS
- * REAL THRESH
- * ..
- * .. Array Arguments ..
- * LOGICAL DOTYPE( * )
- * INTEGER IWORK( * ), NVAL( * )
- * REAL RWORK( * )
- * COMPLEX A( * ), AFAC( * ), AINV( * ), B( * ),
- * $ WORK( * ), X( * ), XACT( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CDRVHE tests the driver routines CHESV, -SVX, and -SVXX.
- *>
- *> Note that this file is used only when the XBLAS are available,
- *> otherwise cdrvhe.f defines this subroutine.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] DOTYPE
- *> \verbatim
- *> DOTYPE is LOGICAL array, dimension (NTYPES)
- *> The matrix types to be used for testing. Matrices of type j
- *> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
- *> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
- *> \endverbatim
- *>
- *> \param[in] NN
- *> \verbatim
- *> NN is INTEGER
- *> The number of values of N contained in the vector NVAL.
- *> \endverbatim
- *>
- *> \param[in] NVAL
- *> \verbatim
- *> NVAL is INTEGER array, dimension (NN)
- *> The values of the matrix dimension N.
- *> \endverbatim
- *>
- *> \param[in] NRHS
- *> \verbatim
- *> NRHS is INTEGER
- *> The number of right hand side vectors to be generated for
- *> each linear system.
- *> \endverbatim
- *>
- *> \param[in] THRESH
- *> \verbatim
- *> THRESH is REAL
- *> The threshold value for the test ratios. A result is
- *> included in the output file if RESULT >= THRESH. To have
- *> every test ratio printed, use THRESH = 0.
- *> \endverbatim
- *>
- *> \param[in] TSTERR
- *> \verbatim
- *> TSTERR is LOGICAL
- *> Flag that indicates whether error exits are to be tested.
- *> \endverbatim
- *>
- *> \param[in] NMAX
- *> \verbatim
- *> NMAX is INTEGER
- *> The maximum value permitted for N, used in dimensioning the
- *> work arrays.
- *> \endverbatim
- *>
- *> \param[out] A
- *> \verbatim
- *> A is COMPLEX array, dimension (NMAX*NMAX)
- *> \endverbatim
- *>
- *> \param[out] AFAC
- *> \verbatim
- *> AFAC is COMPLEX array, dimension (NMAX*NMAX)
- *> \endverbatim
- *>
- *> \param[out] AINV
- *> \verbatim
- *> AINV is COMPLEX array, dimension (NMAX*NMAX)
- *> \endverbatim
- *>
- *> \param[out] B
- *> \verbatim
- *> B is COMPLEX array, dimension (NMAX*NRHS)
- *> \endverbatim
- *>
- *> \param[out] X
- *> \verbatim
- *> X is COMPLEX array, dimension (NMAX*NRHS)
- *> \endverbatim
- *>
- *> \param[out] XACT
- *> \verbatim
- *> XACT is COMPLEX array, dimension (NMAX*NRHS)
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX array, dimension
- *> (NMAX*max(2,NRHS))
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is REAL array, dimension (2*NMAX+2*NRHS)
- *> \endverbatim
- *>
- *> \param[out] IWORK
- *> \verbatim
- *> IWORK is INTEGER array, dimension (NMAX)
- *> \endverbatim
- *>
- *> \param[in] NOUT
- *> \verbatim
- *> NOUT is INTEGER
- *> The unit number for output.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date April 2012
- *
- *> \ingroup complex_lin
- *
- * =====================================================================
- SUBROUTINE CDRVHE( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX,
- $ A, AFAC, AINV, B, X, XACT, WORK, RWORK, IWORK,
- $ NOUT )
- *
- * -- LAPACK test routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * April 2012
- *
- * .. Scalar Arguments ..
- LOGICAL TSTERR
- INTEGER NMAX, NN, NOUT, NRHS
- REAL THRESH
- * ..
- * .. Array Arguments ..
- LOGICAL DOTYPE( * )
- INTEGER IWORK( * ), NVAL( * )
- REAL RWORK( * )
- COMPLEX A( * ), AFAC( * ), AINV( * ), B( * ),
- $ WORK( * ), X( * ), XACT( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ONE, ZERO
- PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
- INTEGER NTYPES, NTESTS
- PARAMETER ( NTYPES = 10, NTESTS = 6 )
- INTEGER NFACT
- PARAMETER ( NFACT = 2 )
- * ..
- * .. Local Scalars ..
- LOGICAL ZEROT
- CHARACTER DIST, EQUED, FACT, TYPE, UPLO, XTYPE
- CHARACTER*3 PATH
- INTEGER I, I1, I2, IFACT, IMAT, IN, INFO, IOFF, IUPLO,
- $ IZERO, J, K, K1, KL, KU, LDA, LWORK, MODE, N,
- $ NB, NBMIN, NERRS, NFAIL, NIMAT, NRUN, NT,
- $ N_ERR_BNDS
- REAL AINVNM, ANORM, CNDNUM, RCOND, RCONDC,
- $ RPVGRW_SVXX
- * ..
- * .. Local Arrays ..
- CHARACTER FACTS( NFACT ), UPLOS( 2 )
- INTEGER ISEED( 4 ), ISEEDY( 4 )
- REAL RESULT( NTESTS ), BERR( NRHS ),
- $ ERRBNDS_N( NRHS, 3 ), ERRBNDS_C( NRHS, 3 )
- * ..
- * .. External Functions ..
- REAL CLANHE, SGET06
- EXTERNAL CLANHE, SGET06
- * ..
- * .. External Subroutines ..
- EXTERNAL ALADHD, ALAERH, ALASVM, CERRVX, CGET04, CHESV,
- $ CHESVX, CHET01, CHETRF, CHETRI2, CLACPY,
- $ CLAIPD, CLARHS, CLASET, CLATB4, CLATMS, CPOT02,
- $ CPOT05, XLAENV, CHESVXX
- * ..
- * .. Scalars in Common ..
- LOGICAL LERR, OK
- CHARACTER*32 SRNAMT
- INTEGER INFOT, NUNIT
- * ..
- * .. Common blocks ..
- COMMON / INFOC / INFOT, NUNIT, OK, LERR
- COMMON / SRNAMC / SRNAMT
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC CMPLX, MAX, MIN
- * ..
- * .. Data statements ..
- DATA ISEEDY / 1988, 1989, 1990, 1991 /
- DATA UPLOS / 'U', 'L' / , FACTS / 'F', 'N' /
- * ..
- * .. Executable Statements ..
- *
- * Initialize constants and the random number seed.
- *
- PATH( 1: 1 ) = 'C'
- PATH( 2: 3 ) = 'HE'
- NRUN = 0
- NFAIL = 0
- NERRS = 0
- DO 10 I = 1, 4
- ISEED( I ) = ISEEDY( I )
- 10 CONTINUE
- LWORK = MAX( 2*NMAX, NMAX*NRHS )
- *
- * Test the error exits
- *
- IF( TSTERR )
- $ CALL CERRVX( PATH, NOUT )
- INFOT = 0
- *
- * Set the block size and minimum block size for testing.
- *
- NB = 1
- NBMIN = 2
- CALL XLAENV( 1, NB )
- CALL XLAENV( 2, NBMIN )
- *
- * Do for each value of N in NVAL
- *
- DO 180 IN = 1, NN
- N = NVAL( IN )
- LDA = MAX( N, 1 )
- XTYPE = 'N'
- NIMAT = NTYPES
- IF( N.LE.0 )
- $ NIMAT = 1
- *
- DO 170 IMAT = 1, NIMAT
- *
- * Do the tests only if DOTYPE( IMAT ) is true.
- *
- IF( .NOT.DOTYPE( IMAT ) )
- $ GO TO 170
- *
- * Skip types 3, 4, 5, or 6 if the matrix size is too small.
- *
- ZEROT = IMAT.GE.3 .AND. IMAT.LE.6
- IF( ZEROT .AND. N.LT.IMAT-2 )
- $ GO TO 170
- *
- * Do first for UPLO = 'U', then for UPLO = 'L'
- *
- DO 160 IUPLO = 1, 2
- UPLO = UPLOS( IUPLO )
- *
- * Set up parameters with CLATB4 and generate a test matrix
- * with CLATMS.
- *
- CALL CLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM, MODE,
- $ CNDNUM, DIST )
- *
- SRNAMT = 'CLATMS'
- CALL CLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE,
- $ CNDNUM, ANORM, KL, KU, UPLO, A, LDA, WORK,
- $ INFO )
- *
- * Check error code from CLATMS.
- *
- IF( INFO.NE.0 ) THEN
- CALL ALAERH( PATH, 'CLATMS', INFO, 0, UPLO, N, N, -1,
- $ -1, -1, IMAT, NFAIL, NERRS, NOUT )
- GO TO 160
- END IF
- *
- * For types 3-6, zero one or more rows and columns of the
- * matrix to test that INFO is returned correctly.
- *
- IF( ZEROT ) THEN
- IF( IMAT.EQ.3 ) THEN
- IZERO = 1
- ELSE IF( IMAT.EQ.4 ) THEN
- IZERO = N
- ELSE
- IZERO = N / 2 + 1
- END IF
- *
- IF( IMAT.LT.6 ) THEN
- *
- * Set row and column IZERO to zero.
- *
- IF( IUPLO.EQ.1 ) THEN
- IOFF = ( IZERO-1 )*LDA
- DO 20 I = 1, IZERO - 1
- A( IOFF+I ) = ZERO
- 20 CONTINUE
- IOFF = IOFF + IZERO
- DO 30 I = IZERO, N
- A( IOFF ) = ZERO
- IOFF = IOFF + LDA
- 30 CONTINUE
- ELSE
- IOFF = IZERO
- DO 40 I = 1, IZERO - 1
- A( IOFF ) = ZERO
- IOFF = IOFF + LDA
- 40 CONTINUE
- IOFF = IOFF - IZERO
- DO 50 I = IZERO, N
- A( IOFF+I ) = ZERO
- 50 CONTINUE
- END IF
- ELSE
- IOFF = 0
- IF( IUPLO.EQ.1 ) THEN
- *
- * Set the first IZERO rows and columns to zero.
- *
- DO 70 J = 1, N
- I2 = MIN( J, IZERO )
- DO 60 I = 1, I2
- A( IOFF+I ) = ZERO
- 60 CONTINUE
- IOFF = IOFF + LDA
- 70 CONTINUE
- ELSE
- *
- * Set the last IZERO rows and columns to zero.
- *
- DO 90 J = 1, N
- I1 = MAX( J, IZERO )
- DO 80 I = I1, N
- A( IOFF+I ) = ZERO
- 80 CONTINUE
- IOFF = IOFF + LDA
- 90 CONTINUE
- END IF
- END IF
- ELSE
- IZERO = 0
- END IF
- *
- * Set the imaginary part of the diagonals.
- *
- CALL CLAIPD( N, A, LDA+1, 0 )
- *
- DO 150 IFACT = 1, NFACT
- *
- * Do first for FACT = 'F', then for other values.
- *
- FACT = FACTS( IFACT )
- *
- * Compute the condition number for comparison with
- * the value returned by CHESVX.
- *
- IF( ZEROT ) THEN
- IF( IFACT.EQ.1 )
- $ GO TO 150
- RCONDC = ZERO
- *
- ELSE IF( IFACT.EQ.1 ) THEN
- *
- * Compute the 1-norm of A.
- *
- ANORM = CLANHE( '1', UPLO, N, A, LDA, RWORK )
- *
- * Factor the matrix A.
- *
- CALL CLACPY( UPLO, N, N, A, LDA, AFAC, LDA )
- CALL CHETRF( UPLO, N, AFAC, LDA, IWORK, WORK,
- $ LWORK, INFO )
- *
- * Compute inv(A) and take its norm.
- *
- CALL CLACPY( UPLO, N, N, AFAC, LDA, AINV, LDA )
- LWORK = (N+NB+1)*(NB+3)
- CALL CHETRI2( UPLO, N, AINV, LDA, IWORK, WORK,
- $ LWORK, INFO )
- AINVNM = CLANHE( '1', UPLO, N, AINV, LDA, RWORK )
- *
- * Compute the 1-norm condition number of A.
- *
- IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
- RCONDC = ONE
- ELSE
- RCONDC = ( ONE / ANORM ) / AINVNM
- END IF
- END IF
- *
- * Form an exact solution and set the right hand side.
- *
- SRNAMT = 'CLARHS'
- CALL CLARHS( PATH, XTYPE, UPLO, ' ', N, N, KL, KU,
- $ NRHS, A, LDA, XACT, LDA, B, LDA, ISEED,
- $ INFO )
- XTYPE = 'C'
- *
- * --- Test CHESV ---
- *
- IF( IFACT.EQ.2 ) THEN
- CALL CLACPY( UPLO, N, N, A, LDA, AFAC, LDA )
- CALL CLACPY( 'Full', N, NRHS, B, LDA, X, LDA )
- *
- * Factor the matrix and solve the system using CHESV.
- *
- SRNAMT = 'CHESV '
- CALL CHESV( UPLO, N, NRHS, AFAC, LDA, IWORK, X,
- $ LDA, WORK, LWORK, INFO )
- *
- * Adjust the expected value of INFO to account for
- * pivoting.
- *
- K = IZERO
- IF( K.GT.0 ) THEN
- 100 CONTINUE
- IF( IWORK( K ).LT.0 ) THEN
- IF( IWORK( K ).NE.-K ) THEN
- K = -IWORK( K )
- GO TO 100
- END IF
- ELSE IF( IWORK( K ).NE.K ) THEN
- K = IWORK( K )
- GO TO 100
- END IF
- END IF
- *
- * Check error code from CHESV .
- *
- IF( INFO.NE.K ) THEN
- CALL ALAERH( PATH, 'CHESV ', INFO, K, UPLO, N,
- $ N, -1, -1, NRHS, IMAT, NFAIL,
- $ NERRS, NOUT )
- GO TO 120
- ELSE IF( INFO.NE.0 ) THEN
- GO TO 120
- END IF
- *
- * Reconstruct matrix from factors and compute
- * residual.
- *
- CALL CHET01( UPLO, N, A, LDA, AFAC, LDA, IWORK,
- $ AINV, LDA, RWORK, RESULT( 1 ) )
- *
- * Compute residual of the computed solution.
- *
- CALL CLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA )
- CALL CPOT02( UPLO, N, NRHS, A, LDA, X, LDA, WORK,
- $ LDA, RWORK, RESULT( 2 ) )
- *
- * Check solution from generated exact solution.
- *
- CALL CGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
- $ RESULT( 3 ) )
- NT = 3
- *
- * Print information about the tests that did not pass
- * the threshold.
- *
- DO 110 K = 1, NT
- IF( RESULT( K ).GE.THRESH ) THEN
- IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
- $ CALL ALADHD( NOUT, PATH )
- WRITE( NOUT, FMT = 9999 )'CHESV ', UPLO, N,
- $ IMAT, K, RESULT( K )
- NFAIL = NFAIL + 1
- END IF
- 110 CONTINUE
- NRUN = NRUN + NT
- 120 CONTINUE
- END IF
- *
- * --- Test CHESVX ---
- *
- IF( IFACT.EQ.2 )
- $ CALL CLASET( UPLO, N, N, CMPLX( ZERO ),
- $ CMPLX( ZERO ), AFAC, LDA )
- CALL CLASET( 'Full', N, NRHS, CMPLX( ZERO ),
- $ CMPLX( ZERO ), X, LDA )
- *
- * Solve the system and compute the condition number and
- * error bounds using CHESVX.
- *
- SRNAMT = 'CHESVX'
- CALL CHESVX( FACT, UPLO, N, NRHS, A, LDA, AFAC, LDA,
- $ IWORK, B, LDA, X, LDA, RCOND, RWORK,
- $ RWORK( NRHS+1 ), WORK, LWORK,
- $ RWORK( 2*NRHS+1 ), INFO )
- *
- * Adjust the expected value of INFO to account for
- * pivoting.
- *
- K = IZERO
- IF( K.GT.0 ) THEN
- 130 CONTINUE
- IF( IWORK( K ).LT.0 ) THEN
- IF( IWORK( K ).NE.-K ) THEN
- K = -IWORK( K )
- GO TO 130
- END IF
- ELSE IF( IWORK( K ).NE.K ) THEN
- K = IWORK( K )
- GO TO 130
- END IF
- END IF
- *
- * Check the error code from CHESVX.
- *
- IF( INFO.NE.K ) THEN
- CALL ALAERH( PATH, 'CHESVX', INFO, K, FACT // UPLO,
- $ N, N, -1, -1, NRHS, IMAT, NFAIL,
- $ NERRS, NOUT )
- GO TO 150
- END IF
- *
- IF( INFO.EQ.0 ) THEN
- IF( IFACT.GE.2 ) THEN
- *
- * Reconstruct matrix from factors and compute
- * residual.
- *
- CALL CHET01( UPLO, N, A, LDA, AFAC, LDA, IWORK,
- $ AINV, LDA, RWORK( 2*NRHS+1 ),
- $ RESULT( 1 ) )
- K1 = 1
- ELSE
- K1 = 2
- END IF
- *
- * Compute residual of the computed solution.
- *
- CALL CLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA )
- CALL CPOT02( UPLO, N, NRHS, A, LDA, X, LDA, WORK,
- $ LDA, RWORK( 2*NRHS+1 ), RESULT( 2 ) )
- *
- * Check solution from generated exact solution.
- *
- CALL CGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
- $ RESULT( 3 ) )
- *
- * Check the error bounds from iterative refinement.
- *
- CALL CPOT05( UPLO, N, NRHS, A, LDA, B, LDA, X, LDA,
- $ XACT, LDA, RWORK, RWORK( NRHS+1 ),
- $ RESULT( 4 ) )
- ELSE
- K1 = 6
- END IF
- *
- * Compare RCOND from CHESVX with the computed value
- * in RCONDC.
- *
- RESULT( 6 ) = SGET06( RCOND, RCONDC )
- *
- * Print information about the tests that did not pass
- * the threshold.
- *
- DO 140 K = K1, 6
- IF( RESULT( K ).GE.THRESH ) THEN
- IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
- $ CALL ALADHD( NOUT, PATH )
- WRITE( NOUT, FMT = 9998 )'CHESVX', FACT, UPLO,
- $ N, IMAT, K, RESULT( K )
- NFAIL = NFAIL + 1
- END IF
- 140 CONTINUE
- NRUN = NRUN + 7 - K1
- *
- * --- Test CHESVXX ---
- *
- * Restore the matrices A and B.
- *
- IF( IFACT.EQ.2 )
- $ CALL CLASET( UPLO, N, N, CMPLX( ZERO ),
- $ CMPLX( ZERO ), AFAC, LDA )
- CALL CLASET( 'Full', N, NRHS, CMPLX( ZERO ),
- $ CMPLX( ZERO ), X, LDA )
- *
- * Solve the system and compute the condition number
- * and error bounds using CHESVXX.
- *
- SRNAMT = 'CHESVXX'
- N_ERR_BNDS = 3
- EQUED = 'N'
- CALL CHESVXX( FACT, UPLO, N, NRHS, A, LDA, AFAC,
- $ LDA, IWORK, EQUED, WORK( N+1 ), B, LDA, X,
- $ LDA, RCOND, RPVGRW_SVXX, BERR, N_ERR_BNDS,
- $ ERRBNDS_N, ERRBNDS_C, 0, ZERO, WORK,
- $ RWORK(2*NRHS+1), INFO )
- *
- * Adjust the expected value of INFO to account for
- * pivoting.
- *
- K = IZERO
- IF( K.GT.0 ) THEN
- 135 CONTINUE
- IF( IWORK( K ).LT.0 ) THEN
- IF( IWORK( K ).NE.-K ) THEN
- K = -IWORK( K )
- GO TO 135
- END IF
- ELSE IF( IWORK( K ).NE.K ) THEN
- K = IWORK( K )
- GO TO 135
- END IF
- END IF
- *
- * Check the error code from CHESVXX.
- *
- IF( INFO.NE.K .AND. INFO.LE.N ) THEN
- CALL ALAERH( PATH, 'CHESVXX', INFO, K,
- $ FACT // UPLO, N, N, -1, -1, NRHS, IMAT, NFAIL,
- $ NERRS, NOUT )
- GO TO 150
- END IF
- *
- IF( INFO.EQ.0 ) THEN
- IF( IFACT.GE.2 ) THEN
- *
- * Reconstruct matrix from factors and compute
- * residual.
- *
- CALL CHET01( UPLO, N, A, LDA, AFAC, LDA, IWORK,
- $ AINV, LDA, RWORK(2*NRHS+1),
- $ RESULT( 1 ) )
- K1 = 1
- ELSE
- K1 = 2
- END IF
- *
- * Compute residual of the computed solution.
- *
- CALL CLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA )
- CALL CPOT02( UPLO, N, NRHS, A, LDA, X, LDA, WORK,
- $ LDA, RWORK( 2*NRHS+1 ), RESULT( 2 ) )
- RESULT( 2 ) = 0.0
- *
- * Check solution from generated exact solution.
- *
- CALL CGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
- $ RESULT( 3 ) )
- *
- * Check the error bounds from iterative refinement.
- *
- CALL CPOT05( UPLO, N, NRHS, A, LDA, B, LDA, X, LDA,
- $ XACT, LDA, RWORK, RWORK( NRHS+1 ),
- $ RESULT( 4 ) )
- ELSE
- K1 = 6
- END IF
- *
- * Compare RCOND from CHESVXX with the computed value
- * in RCONDC.
- *
- RESULT( 6 ) = SGET06( RCOND, RCONDC )
- *
- * Print information about the tests that did not pass
- * the threshold.
- *
- DO 85 K = K1, 6
- IF( RESULT( K ).GE.THRESH ) THEN
- IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
- $ CALL ALADHD( NOUT, PATH )
- WRITE( NOUT, FMT = 9998 )'CHESVXX',
- $ FACT, UPLO, N, IMAT, K,
- $ RESULT( K )
- NFAIL = NFAIL + 1
- END IF
- 85 CONTINUE
- NRUN = NRUN + 7 - K1
- *
- 150 CONTINUE
- *
- 160 CONTINUE
- 170 CONTINUE
- 180 CONTINUE
- *
- * Print a summary of the results.
- *
- CALL ALASVM( PATH, NOUT, NFAIL, NRUN, NERRS )
- *
-
- * Test Error Bounds from CHESVXX
-
- CALL CEBCHVXX(THRESH, PATH)
-
- 9999 FORMAT( 1X, A, ', UPLO=''', A1, ''', N =', I5, ', type ', I2,
- $ ', test ', I2, ', ratio =', G12.5 )
- 9998 FORMAT( 1X, A, ', FACT=''', A1, ''', UPLO=''', A1, ''', N =', I5,
- $ ', type ', I2, ', test ', I2, ', ratio =', G12.5 )
- RETURN
- *
- * End of CDRVHE
- *
- END
|