|
- *> \brief \b SSTT21
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SSTT21( N, KBAND, AD, AE, SD, SE, U, LDU, WORK,
- * RESULT )
- *
- * .. Scalar Arguments ..
- * INTEGER KBAND, LDU, N
- * ..
- * .. Array Arguments ..
- * REAL AD( * ), AE( * ), RESULT( 2 ), SD( * ),
- * $ SE( * ), U( LDU, * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SSTT21 checks a decomposition of the form
- *>
- *> A = U S U'
- *>
- *> where ' means transpose, A is symmetric tridiagonal, U is orthogonal,
- *> and S is diagonal (if KBAND=0) or symmetric tridiagonal (if KBAND=1).
- *> Two tests are performed:
- *>
- *> RESULT(1) = | A - U S U' | / ( |A| n ulp )
- *>
- *> RESULT(2) = | I - UU' | / ( n ulp )
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The size of the matrix. If it is zero, SSTT21 does nothing.
- *> It must be at least zero.
- *> \endverbatim
- *>
- *> \param[in] KBAND
- *> \verbatim
- *> KBAND is INTEGER
- *> The bandwidth of the matrix S. It may only be zero or one.
- *> If zero, then S is diagonal, and SE is not referenced. If
- *> one, then S is symmetric tri-diagonal.
- *> \endverbatim
- *>
- *> \param[in] AD
- *> \verbatim
- *> AD is REAL array, dimension (N)
- *> The diagonal of the original (unfactored) matrix A. A is
- *> assumed to be symmetric tridiagonal.
- *> \endverbatim
- *>
- *> \param[in] AE
- *> \verbatim
- *> AE is REAL array, dimension (N-1)
- *> The off-diagonal of the original (unfactored) matrix A. A
- *> is assumed to be symmetric tridiagonal. AE(1) is the (1,2)
- *> and (2,1) element, AE(2) is the (2,3) and (3,2) element, etc.
- *> \endverbatim
- *>
- *> \param[in] SD
- *> \verbatim
- *> SD is REAL array, dimension (N)
- *> The diagonal of the (symmetric tri-) diagonal matrix S.
- *> \endverbatim
- *>
- *> \param[in] SE
- *> \verbatim
- *> SE is REAL array, dimension (N-1)
- *> The off-diagonal of the (symmetric tri-) diagonal matrix S.
- *> Not referenced if KBSND=0. If KBAND=1, then AE(1) is the
- *> (1,2) and (2,1) element, SE(2) is the (2,3) and (3,2)
- *> element, etc.
- *> \endverbatim
- *>
- *> \param[in] U
- *> \verbatim
- *> U is REAL array, dimension (LDU, N)
- *> The orthogonal matrix in the decomposition.
- *> \endverbatim
- *>
- *> \param[in] LDU
- *> \verbatim
- *> LDU is INTEGER
- *> The leading dimension of U. LDU must be at least N.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is REAL array, dimension (N*(N+1))
- *> \endverbatim
- *>
- *> \param[out] RESULT
- *> \verbatim
- *> RESULT is REAL array, dimension (2)
- *> The values computed by the two tests described above. The
- *> values are currently limited to 1/ulp, to avoid overflow.
- *> RESULT(1) is always modified.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup single_eig
- *
- * =====================================================================
- SUBROUTINE SSTT21( N, KBAND, AD, AE, SD, SE, U, LDU, WORK,
- $ RESULT )
- *
- * -- LAPACK test routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER KBAND, LDU, N
- * ..
- * .. Array Arguments ..
- REAL AD( * ), AE( * ), RESULT( 2 ), SD( * ),
- $ SE( * ), U( LDU, * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ZERO, ONE
- PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 )
- * ..
- * .. Local Scalars ..
- INTEGER J
- REAL ANORM, TEMP1, TEMP2, ULP, UNFL, WNORM
- * ..
- * .. External Functions ..
- REAL SLAMCH, SLANGE, SLANSY
- EXTERNAL SLAMCH, SLANGE, SLANSY
- * ..
- * .. External Subroutines ..
- EXTERNAL SGEMM, SLASET, SSYR, SSYR2
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, MAX, MIN, REAL
- * ..
- * .. Executable Statements ..
- *
- * 1) Constants
- *
- RESULT( 1 ) = ZERO
- RESULT( 2 ) = ZERO
- IF( N.LE.0 )
- $ RETURN
- *
- UNFL = SLAMCH( 'Safe minimum' )
- ULP = SLAMCH( 'Precision' )
- *
- * Do Test 1
- *
- * Copy A & Compute its 1-Norm:
- *
- CALL SLASET( 'Full', N, N, ZERO, ZERO, WORK, N )
- *
- ANORM = ZERO
- TEMP1 = ZERO
- *
- DO 10 J = 1, N - 1
- WORK( ( N+1 )*( J-1 )+1 ) = AD( J )
- WORK( ( N+1 )*( J-1 )+2 ) = AE( J )
- TEMP2 = ABS( AE( J ) )
- ANORM = MAX( ANORM, ABS( AD( J ) )+TEMP1+TEMP2 )
- TEMP1 = TEMP2
- 10 CONTINUE
- *
- WORK( N**2 ) = AD( N )
- ANORM = MAX( ANORM, ABS( AD( N ) )+TEMP1, UNFL )
- *
- * Norm of A - USU'
- *
- DO 20 J = 1, N
- CALL SSYR( 'L', N, -SD( J ), U( 1, J ), 1, WORK, N )
- 20 CONTINUE
- *
- IF( N.GT.1 .AND. KBAND.EQ.1 ) THEN
- DO 30 J = 1, N - 1
- CALL SSYR2( 'L', N, -SE( J ), U( 1, J ), 1, U( 1, J+1 ), 1,
- $ WORK, N )
- 30 CONTINUE
- END IF
- *
- WNORM = SLANSY( '1', 'L', N, WORK, N, WORK( N**2+1 ) )
- *
- IF( ANORM.GT.WNORM ) THEN
- RESULT( 1 ) = ( WNORM / ANORM ) / ( N*ULP )
- ELSE
- IF( ANORM.LT.ONE ) THEN
- RESULT( 1 ) = ( MIN( WNORM, N*ANORM ) / ANORM ) / ( N*ULP )
- ELSE
- RESULT( 1 ) = MIN( WNORM / ANORM, REAL( N ) ) / ( N*ULP )
- END IF
- END IF
- *
- * Do Test 2
- *
- * Compute UU' - I
- *
- CALL SGEMM( 'N', 'C', N, N, N, ONE, U, LDU, U, LDU, ZERO, WORK,
- $ N )
- *
- DO 40 J = 1, N
- WORK( ( N+1 )*( J-1 )+1 ) = WORK( ( N+1 )*( J-1 )+1 ) - ONE
- 40 CONTINUE
- *
- RESULT( 2 ) = MIN( REAL( N ), SLANGE( '1', N, N, WORK, N,
- $ WORK( N**2+1 ) ) ) / ( N*ULP )
- *
- RETURN
- *
- * End of SSTT21
- *
- END
|