|
- *> \brief \b SGSVTS3
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SGSVTS3( M, P, N, A, AF, LDA, B, BF, LDB, U, LDU, V,
- * LDV, Q, LDQ, ALPHA, BETA, R, LDR, IWORK, WORK,
- * LWORK, RWORK, RESULT )
- *
- * .. Scalar Arguments ..
- * INTEGER LDA, LDB, LDQ, LDR, LDU, LDV, LWORK, M, N, P
- * ..
- * .. Array Arguments ..
- * INTEGER IWORK( * )
- * REAL A( LDA, * ), AF( LDA, * ), ALPHA( * ),
- * $ B( LDB, * ), BETA( * ), BF( LDB, * ),
- * $ Q( LDQ, * ), R( LDR, * ), RESULT( 6 ),
- * $ RWORK( * ), U( LDU, * ), V( LDV, * ),
- * $ WORK( LWORK )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SGSVTS3 tests SGGSVD3, which computes the GSVD of an M-by-N matrix A
- *> and a P-by-N matrix B:
- *> U'*A*Q = D1*R and V'*B*Q = D2*R.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the matrix A. M >= 0.
- *> \endverbatim
- *>
- *> \param[in] P
- *> \verbatim
- *> P is INTEGER
- *> The number of rows of the matrix B. P >= 0.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the matrices A and B. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is REAL array, dimension (LDA,M)
- *> The M-by-N matrix A.
- *> \endverbatim
- *>
- *> \param[out] AF
- *> \verbatim
- *> AF is REAL array, dimension (LDA,N)
- *> Details of the GSVD of A and B, as returned by SGGSVD3,
- *> see SGGSVD3 for further details.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the arrays A and AF.
- *> LDA >= max( 1,M ).
- *> \endverbatim
- *>
- *> \param[in] B
- *> \verbatim
- *> B is REAL array, dimension (LDB,P)
- *> On entry, the P-by-N matrix B.
- *> \endverbatim
- *>
- *> \param[out] BF
- *> \verbatim
- *> BF is REAL array, dimension (LDB,N)
- *> Details of the GSVD of A and B, as returned by SGGSVD3,
- *> see SGGSVD3 for further details.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the arrays B and BF.
- *> LDB >= max(1,P).
- *> \endverbatim
- *>
- *> \param[out] U
- *> \verbatim
- *> U is REAL array, dimension(LDU,M)
- *> The M by M orthogonal matrix U.
- *> \endverbatim
- *>
- *> \param[in] LDU
- *> \verbatim
- *> LDU is INTEGER
- *> The leading dimension of the array U. LDU >= max(1,M).
- *> \endverbatim
- *>
- *> \param[out] V
- *> \verbatim
- *> V is REAL array, dimension(LDV,M)
- *> The P by P orthogonal matrix V.
- *> \endverbatim
- *>
- *> \param[in] LDV
- *> \verbatim
- *> LDV is INTEGER
- *> The leading dimension of the array V. LDV >= max(1,P).
- *> \endverbatim
- *>
- *> \param[out] Q
- *> \verbatim
- *> Q is REAL array, dimension(LDQ,N)
- *> The N by N orthogonal matrix Q.
- *> \endverbatim
- *>
- *> \param[in] LDQ
- *> \verbatim
- *> LDQ is INTEGER
- *> The leading dimension of the array Q. LDQ >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] ALPHA
- *> \verbatim
- *> ALPHA is REAL array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] BETA
- *> \verbatim
- *> BETA is REAL array, dimension (N)
- *>
- *> The generalized singular value pairs of A and B, the
- *> ``diagonal'' matrices D1 and D2 are constructed from
- *> ALPHA and BETA, see subroutine SGGSVD3 for details.
- *> \endverbatim
- *>
- *> \param[out] R
- *> \verbatim
- *> R is REAL array, dimension(LDQ,N)
- *> The upper triangular matrix R.
- *> \endverbatim
- *>
- *> \param[in] LDR
- *> \verbatim
- *> LDR is INTEGER
- *> The leading dimension of the array R. LDR >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] IWORK
- *> \verbatim
- *> IWORK is INTEGER array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is REAL array, dimension (LWORK)
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The dimension of the array WORK,
- *> LWORK >= max(M,P,N)*max(M,P,N).
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is REAL array, dimension (max(M,P,N))
- *> \endverbatim
- *>
- *> \param[out] RESULT
- *> \verbatim
- *> RESULT is REAL array, dimension (6)
- *> The test ratios:
- *> RESULT(1) = norm( U'*A*Q - D1*R ) / ( MAX(M,N)*norm(A)*ULP)
- *> RESULT(2) = norm( V'*B*Q - D2*R ) / ( MAX(P,N)*norm(B)*ULP)
- *> RESULT(3) = norm( I - U'*U ) / ( M*ULP )
- *> RESULT(4) = norm( I - V'*V ) / ( P*ULP )
- *> RESULT(5) = norm( I - Q'*Q ) / ( N*ULP )
- *> RESULT(6) = 0 if ALPHA is in decreasing order;
- *> = ULPINV otherwise.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup single_eig
- *
- * =====================================================================
- SUBROUTINE SGSVTS3( M, P, N, A, AF, LDA, B, BF, LDB, U, LDU, V,
- $ LDV, Q, LDQ, ALPHA, BETA, R, LDR, IWORK, WORK,
- $ LWORK, RWORK, RESULT )
- *
- * -- LAPACK test routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER LDA, LDB, LDQ, LDR, LDU, LDV, LWORK, M, N, P
- * ..
- * .. Array Arguments ..
- INTEGER IWORK( * )
- REAL A( LDA, * ), AF( LDA, * ), ALPHA( * ),
- $ B( LDB, * ), BETA( * ), BF( LDB, * ),
- $ Q( LDQ, * ), R( LDR, * ), RESULT( 6 ),
- $ RWORK( * ), U( LDU, * ), V( LDV, * ),
- $ WORK( LWORK )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ZERO, ONE
- PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
- * ..
- * .. Local Scalars ..
- INTEGER I, INFO, J, K, L
- REAL ANORM, BNORM, RESID, TEMP, ULP, ULPINV, UNFL
- * ..
- * .. External Functions ..
- REAL SLAMCH, SLANGE, SLANSY
- EXTERNAL SLAMCH, SLANGE, SLANSY
- * ..
- * .. External Subroutines ..
- EXTERNAL SCOPY, SGEMM, SGGSVD3, SLACPY, SLASET, SSYRK
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, MIN, REAL
- * ..
- * .. Executable Statements ..
- *
- ULP = SLAMCH( 'Precision' )
- ULPINV = ONE / ULP
- UNFL = SLAMCH( 'Safe minimum' )
- *
- * Copy the matrix A to the array AF.
- *
- CALL SLACPY( 'Full', M, N, A, LDA, AF, LDA )
- CALL SLACPY( 'Full', P, N, B, LDB, BF, LDB )
- *
- ANORM = MAX( SLANGE( '1', M, N, A, LDA, RWORK ), UNFL )
- BNORM = MAX( SLANGE( '1', P, N, B, LDB, RWORK ), UNFL )
- *
- * Factorize the matrices A and B in the arrays AF and BF.
- *
- CALL SGGSVD3( 'U', 'V', 'Q', M, N, P, K, L, AF, LDA, BF, LDB,
- $ ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK, LWORK,
- $ IWORK, INFO )
- *
- * Copy R
- *
- DO 20 I = 1, MIN( K+L, M )
- DO 10 J = I, K + L
- R( I, J ) = AF( I, N-K-L+J )
- 10 CONTINUE
- 20 CONTINUE
- *
- IF( M-K-L.LT.0 ) THEN
- DO 40 I = M + 1, K + L
- DO 30 J = I, K + L
- R( I, J ) = BF( I-K, N-K-L+J )
- 30 CONTINUE
- 40 CONTINUE
- END IF
- *
- * Compute A:= U'*A*Q - D1*R
- *
- CALL SGEMM( 'No transpose', 'No transpose', M, N, N, ONE, A, LDA,
- $ Q, LDQ, ZERO, WORK, LDA )
- *
- CALL SGEMM( 'Transpose', 'No transpose', M, N, M, ONE, U, LDU,
- $ WORK, LDA, ZERO, A, LDA )
- *
- DO 60 I = 1, K
- DO 50 J = I, K + L
- A( I, N-K-L+J ) = A( I, N-K-L+J ) - R( I, J )
- 50 CONTINUE
- 60 CONTINUE
- *
- DO 80 I = K + 1, MIN( K+L, M )
- DO 70 J = I, K + L
- A( I, N-K-L+J ) = A( I, N-K-L+J ) - ALPHA( I )*R( I, J )
- 70 CONTINUE
- 80 CONTINUE
- *
- * Compute norm( U'*A*Q - D1*R ) / ( MAX(1,M,N)*norm(A)*ULP ) .
- *
- RESID = SLANGE( '1', M, N, A, LDA, RWORK )
- *
- IF( ANORM.GT.ZERO ) THEN
- RESULT( 1 ) = ( ( RESID / REAL( MAX( 1, M, N ) ) ) / ANORM ) /
- $ ULP
- ELSE
- RESULT( 1 ) = ZERO
- END IF
- *
- * Compute B := V'*B*Q - D2*R
- *
- CALL SGEMM( 'No transpose', 'No transpose', P, N, N, ONE, B, LDB,
- $ Q, LDQ, ZERO, WORK, LDB )
- *
- CALL SGEMM( 'Transpose', 'No transpose', P, N, P, ONE, V, LDV,
- $ WORK, LDB, ZERO, B, LDB )
- *
- DO 100 I = 1, L
- DO 90 J = I, L
- B( I, N-L+J ) = B( I, N-L+J ) - BETA( K+I )*R( K+I, K+J )
- 90 CONTINUE
- 100 CONTINUE
- *
- * Compute norm( V'*B*Q - D2*R ) / ( MAX(P,N)*norm(B)*ULP ) .
- *
- RESID = SLANGE( '1', P, N, B, LDB, RWORK )
- IF( BNORM.GT.ZERO ) THEN
- RESULT( 2 ) = ( ( RESID / REAL( MAX( 1, P, N ) ) ) / BNORM ) /
- $ ULP
- ELSE
- RESULT( 2 ) = ZERO
- END IF
- *
- * Compute I - U'*U
- *
- CALL SLASET( 'Full', M, M, ZERO, ONE, WORK, LDQ )
- CALL SSYRK( 'Upper', 'Transpose', M, M, -ONE, U, LDU, ONE, WORK,
- $ LDU )
- *
- * Compute norm( I - U'*U ) / ( M * ULP ) .
- *
- RESID = SLANSY( '1', 'Upper', M, WORK, LDU, RWORK )
- RESULT( 3 ) = ( RESID / REAL( MAX( 1, M ) ) ) / ULP
- *
- * Compute I - V'*V
- *
- CALL SLASET( 'Full', P, P, ZERO, ONE, WORK, LDV )
- CALL SSYRK( 'Upper', 'Transpose', P, P, -ONE, V, LDV, ONE, WORK,
- $ LDV )
- *
- * Compute norm( I - V'*V ) / ( P * ULP ) .
- *
- RESID = SLANSY( '1', 'Upper', P, WORK, LDV, RWORK )
- RESULT( 4 ) = ( RESID / REAL( MAX( 1, P ) ) ) / ULP
- *
- * Compute I - Q'*Q
- *
- CALL SLASET( 'Full', N, N, ZERO, ONE, WORK, LDQ )
- CALL SSYRK( 'Upper', 'Transpose', N, N, -ONE, Q, LDQ, ONE, WORK,
- $ LDQ )
- *
- * Compute norm( I - Q'*Q ) / ( N * ULP ) .
- *
- RESID = SLANSY( '1', 'Upper', N, WORK, LDQ, RWORK )
- RESULT( 5 ) = ( RESID / REAL( MAX( 1, N ) ) ) / ULP
- *
- * Check sorting
- *
- CALL SCOPY( N, ALPHA, 1, WORK, 1 )
- DO 110 I = K + 1, MIN( K+L, M )
- J = IWORK( I )
- IF( I.NE.J ) THEN
- TEMP = WORK( I )
- WORK( I ) = WORK( J )
- WORK( J ) = TEMP
- END IF
- 110 CONTINUE
- *
- RESULT( 6 ) = ZERO
- DO 120 I = K + 1, MIN( K+L, M ) - 1
- IF( WORK( I ).LT.WORK( I+1 ) )
- $ RESULT( 6 ) = ULPINV
- 120 CONTINUE
- *
- RETURN
- *
- * End of SGSVTS3
- *
- END
|