|
- *> \brief \b SCSDTS
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SCSDTS( M, P, Q, X, XF, LDX, U1, LDU1, U2, LDU2, V1T,
- * LDV1T, V2T, LDV2T, THETA, IWORK, WORK, LWORK,
- * RWORK, RESULT )
- *
- * .. Scalar Arguments ..
- * INTEGER LDX, LDU1, LDU2, LDV1T, LDV2T, LWORK, M, P, Q
- * ..
- * .. Array Arguments ..
- * INTEGER IWORK( * )
- * REAL RESULT( 15 ), RWORK( * ), THETA( * )
- * REAL U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ),
- * $ V2T( LDV2T, * ), WORK( LWORK ), X( LDX, * ),
- * $ XF( LDX, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SCSDTS tests SORCSD, which, given an M-by-M partitioned orthogonal
- *> matrix X,
- *> Q M-Q
- *> X = [ X11 X12 ] P ,
- *> [ X21 X22 ] M-P
- *>
- *> computes the CSD
- *>
- *> [ U1 ]**T * [ X11 X12 ] * [ V1 ]
- *> [ U2 ] [ X21 X22 ] [ V2 ]
- *>
- *> [ I 0 0 | 0 0 0 ]
- *> [ 0 C 0 | 0 -S 0 ]
- *> [ 0 0 0 | 0 0 -I ]
- *> = [---------------------] = [ D11 D12 ] .
- *> [ 0 0 0 | I 0 0 ] [ D21 D22 ]
- *> [ 0 S 0 | 0 C 0 ]
- *> [ 0 0 I | 0 0 0 ]
- *>
- *> and also SORCSD2BY1, which, given
- *> Q
- *> [ X11 ] P ,
- *> [ X21 ] M-P
- *>
- *> computes the 2-by-1 CSD
- *>
- *> [ I 0 0 ]
- *> [ 0 C 0 ]
- *> [ 0 0 0 ]
- *> [ U1 ]**T * [ X11 ] * V1 = [----------] = [ D11 ] ,
- *> [ U2 ] [ X21 ] [ 0 0 0 ] [ D21 ]
- *> [ 0 S 0 ]
- *> [ 0 0 I ]
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the matrix X. M >= 0.
- *> \endverbatim
- *>
- *> \param[in] P
- *> \verbatim
- *> P is INTEGER
- *> The number of rows of the matrix X11. P >= 0.
- *> \endverbatim
- *>
- *> \param[in] Q
- *> \verbatim
- *> Q is INTEGER
- *> The number of columns of the matrix X11. Q >= 0.
- *> \endverbatim
- *>
- *> \param[in] X
- *> \verbatim
- *> X is REAL array, dimension (LDX,M)
- *> The M-by-M matrix X.
- *> \endverbatim
- *>
- *> \param[out] XF
- *> \verbatim
- *> XF is REAL array, dimension (LDX,M)
- *> Details of the CSD of X, as returned by SORCSD;
- *> see SORCSD for further details.
- *> \endverbatim
- *>
- *> \param[in] LDX
- *> \verbatim
- *> LDX is INTEGER
- *> The leading dimension of the arrays X and XF.
- *> LDX >= max( 1,M ).
- *> \endverbatim
- *>
- *> \param[out] U1
- *> \verbatim
- *> U1 is REAL array, dimension(LDU1,P)
- *> The P-by-P orthogonal matrix U1.
- *> \endverbatim
- *>
- *> \param[in] LDU1
- *> \verbatim
- *> LDU1 is INTEGER
- *> The leading dimension of the array U1. LDU >= max(1,P).
- *> \endverbatim
- *>
- *> \param[out] U2
- *> \verbatim
- *> U2 is REAL array, dimension(LDU2,M-P)
- *> The (M-P)-by-(M-P) orthogonal matrix U2.
- *> \endverbatim
- *>
- *> \param[in] LDU2
- *> \verbatim
- *> LDU2 is INTEGER
- *> The leading dimension of the array U2. LDU >= max(1,M-P).
- *> \endverbatim
- *>
- *> \param[out] V1T
- *> \verbatim
- *> V1T is REAL array, dimension(LDV1T,Q)
- *> The Q-by-Q orthogonal matrix V1T.
- *> \endverbatim
- *>
- *> \param[in] LDV1T
- *> \verbatim
- *> LDV1T is INTEGER
- *> The leading dimension of the array V1T. LDV1T >=
- *> max(1,Q).
- *> \endverbatim
- *>
- *> \param[out] V2T
- *> \verbatim
- *> V2T is REAL array, dimension(LDV2T,M-Q)
- *> The (M-Q)-by-(M-Q) orthogonal matrix V2T.
- *> \endverbatim
- *>
- *> \param[in] LDV2T
- *> \verbatim
- *> LDV2T is INTEGER
- *> The leading dimension of the array V2T. LDV2T >=
- *> max(1,M-Q).
- *> \endverbatim
- *>
- *> \param[out] THETA
- *> \verbatim
- *> THETA is REAL array, dimension MIN(P,M-P,Q,M-Q)
- *> The CS values of X; the essentially diagonal matrices C and
- *> S are constructed from THETA; see subroutine SORCSD for
- *> details.
- *> \endverbatim
- *>
- *> \param[out] IWORK
- *> \verbatim
- *> IWORK is INTEGER array, dimension (M)
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is REAL array, dimension (LWORK)
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The dimension of the array WORK
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is REAL array
- *> \endverbatim
- *>
- *> \param[out] RESULT
- *> \verbatim
- *> RESULT is REAL array, dimension (15)
- *> The test ratios:
- *> First, the 2-by-2 CSD:
- *> RESULT(1) = norm( U1'*X11*V1 - D11 ) / ( MAX(1,P,Q)*EPS2 )
- *> RESULT(2) = norm( U1'*X12*V2 - D12 ) / ( MAX(1,P,M-Q)*EPS2 )
- *> RESULT(3) = norm( U2'*X21*V1 - D21 ) / ( MAX(1,M-P,Q)*EPS2 )
- *> RESULT(4) = norm( U2'*X22*V2 - D22 ) / ( MAX(1,M-P,M-Q)*EPS2 )
- *> RESULT(5) = norm( I - U1'*U1 ) / ( MAX(1,P)*ULP )
- *> RESULT(6) = norm( I - U2'*U2 ) / ( MAX(1,M-P)*ULP )
- *> RESULT(7) = norm( I - V1T'*V1T ) / ( MAX(1,Q)*ULP )
- *> RESULT(8) = norm( I - V2T'*V2T ) / ( MAX(1,M-Q)*ULP )
- *> RESULT(9) = 0 if THETA is in increasing order and
- *> all angles are in [0,pi/2];
- *> = ULPINV otherwise.
- *> Then, the 2-by-1 CSD:
- *> RESULT(10) = norm( U1'*X11*V1 - D11 ) / ( MAX(1,P,Q)*EPS2 )
- *> RESULT(11) = norm( U2'*X21*V1 - D21 ) / ( MAX(1,M-P,Q)*EPS2 )
- *> RESULT(12) = norm( I - U1'*U1 ) / ( MAX(1,P)*ULP )
- *> RESULT(13) = norm( I - U2'*U2 ) / ( MAX(1,M-P)*ULP )
- *> RESULT(14) = norm( I - V1T'*V1T ) / ( MAX(1,Q)*ULP )
- *> RESULT(15) = 0 if THETA is in increasing order and
- *> all angles are in [0,pi/2];
- *> = ULPINV otherwise.
- *> ( EPS2 = MAX( norm( I - X'*X ) / M, ULP ). )
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup single_eig
- *
- * =====================================================================
- SUBROUTINE SCSDTS( M, P, Q, X, XF, LDX, U1, LDU1, U2, LDU2, V1T,
- $ LDV1T, V2T, LDV2T, THETA, IWORK, WORK, LWORK,
- $ RWORK, RESULT )
- *
- * -- LAPACK test routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER LDX, LDU1, LDU2, LDV1T, LDV2T, LWORK, M, P, Q
- * ..
- * .. Array Arguments ..
- INTEGER IWORK( * )
- REAL RESULT( 15 ), RWORK( * ), THETA( * )
- REAL U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ),
- $ V2T( LDV2T, * ), WORK( LWORK ), X( LDX, * ),
- $ XF( LDX, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL REALONE, REALZERO
- PARAMETER ( REALONE = 1.0E0, REALZERO = 0.0E0 )
- REAL ZERO, ONE
- PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 )
- REAL PIOVER2
- PARAMETER ( PIOVER2 = 1.57079632679489661923132169163975144210E0 )
- * ..
- * .. Local Scalars ..
- INTEGER I, INFO, R
- REAL EPS2, RESID, ULP, ULPINV
- * ..
- * .. External Functions ..
- REAL SLAMCH, SLANGE, SLANSY
- EXTERNAL SLAMCH, SLANGE, SLANSY
- * ..
- * .. External Subroutines ..
- EXTERNAL SGEMM, SLACPY, SLASET, SORCSD, SORCSD2BY1,
- $ SSYRK
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC COS, MAX, MIN, REAL, SIN
- * ..
- * .. Executable Statements ..
- *
- ULP = SLAMCH( 'Precision' )
- ULPINV = REALONE / ULP
- *
- * The first half of the routine checks the 2-by-2 CSD
- *
- CALL SLASET( 'Full', M, M, ZERO, ONE, WORK, LDX )
- CALL SSYRK( 'Upper', 'Conjugate transpose', M, M, -ONE, X, LDX,
- $ ONE, WORK, LDX )
- IF (M.GT.0) THEN
- EPS2 = MAX( ULP,
- $ SLANGE( '1', M, M, WORK, LDX, RWORK ) / REAL( M ) )
- ELSE
- EPS2 = ULP
- END IF
- R = MIN( P, M-P, Q, M-Q )
- *
- * Copy the matrix X to the array XF.
- *
- CALL SLACPY( 'Full', M, M, X, LDX, XF, LDX )
- *
- * Compute the CSD
- *
- CALL SORCSD( 'Y', 'Y', 'Y', 'Y', 'N', 'D', M, P, Q, XF(1,1), LDX,
- $ XF(1,Q+1), LDX, XF(P+1,1), LDX, XF(P+1,Q+1), LDX,
- $ THETA, U1, LDU1, U2, LDU2, V1T, LDV1T, V2T, LDV2T,
- $ WORK, LWORK, IWORK, INFO )
- *
- * Compute XF := diag(U1,U2)'*X*diag(V1,V2) - [D11 D12; D21 D22]
- *
- CALL SLACPY( 'Full', M, M, X, LDX, XF, LDX )
- *
- CALL SGEMM( 'No transpose', 'Conjugate transpose', P, Q, Q, ONE,
- $ XF, LDX, V1T, LDV1T, ZERO, WORK, LDX )
- *
- CALL SGEMM( 'Conjugate transpose', 'No transpose', P, Q, P, ONE,
- $ U1, LDU1, WORK, LDX, ZERO, XF, LDX )
- *
- DO I = 1, MIN(P,Q)-R
- XF(I,I) = XF(I,I) - ONE
- END DO
- DO I = 1, R
- XF(MIN(P,Q)-R+I,MIN(P,Q)-R+I) =
- $ XF(MIN(P,Q)-R+I,MIN(P,Q)-R+I) - COS(THETA(I))
- END DO
- *
- CALL SGEMM( 'No transpose', 'Conjugate transpose', P, M-Q, M-Q,
- $ ONE, XF(1,Q+1), LDX, V2T, LDV2T, ZERO, WORK, LDX )
- *
- CALL SGEMM( 'Conjugate transpose', 'No transpose', P, M-Q, P,
- $ ONE, U1, LDU1, WORK, LDX, ZERO, XF(1,Q+1), LDX )
- *
- DO I = 1, MIN(P,M-Q)-R
- XF(P-I+1,M-I+1) = XF(P-I+1,M-I+1) + ONE
- END DO
- DO I = 1, R
- XF(P-(MIN(P,M-Q)-R)+1-I,M-(MIN(P,M-Q)-R)+1-I) =
- $ XF(P-(MIN(P,M-Q)-R)+1-I,M-(MIN(P,M-Q)-R)+1-I) +
- $ SIN(THETA(R-I+1))
- END DO
- *
- CALL SGEMM( 'No transpose', 'Conjugate transpose', M-P, Q, Q, ONE,
- $ XF(P+1,1), LDX, V1T, LDV1T, ZERO, WORK, LDX )
- *
- CALL SGEMM( 'Conjugate transpose', 'No transpose', M-P, Q, M-P,
- $ ONE, U2, LDU2, WORK, LDX, ZERO, XF(P+1,1), LDX )
- *
- DO I = 1, MIN(M-P,Q)-R
- XF(M-I+1,Q-I+1) = XF(M-I+1,Q-I+1) - ONE
- END DO
- DO I = 1, R
- XF(M-(MIN(M-P,Q)-R)+1-I,Q-(MIN(M-P,Q)-R)+1-I) =
- $ XF(M-(MIN(M-P,Q)-R)+1-I,Q-(MIN(M-P,Q)-R)+1-I) -
- $ SIN(THETA(R-I+1))
- END DO
- *
- CALL SGEMM( 'No transpose', 'Conjugate transpose', M-P, M-Q, M-Q,
- $ ONE, XF(P+1,Q+1), LDX, V2T, LDV2T, ZERO, WORK, LDX )
- *
- CALL SGEMM( 'Conjugate transpose', 'No transpose', M-P, M-Q, M-P,
- $ ONE, U2, LDU2, WORK, LDX, ZERO, XF(P+1,Q+1), LDX )
- *
- DO I = 1, MIN(M-P,M-Q)-R
- XF(P+I,Q+I) = XF(P+I,Q+I) - ONE
- END DO
- DO I = 1, R
- XF(P+(MIN(M-P,M-Q)-R)+I,Q+(MIN(M-P,M-Q)-R)+I) =
- $ XF(P+(MIN(M-P,M-Q)-R)+I,Q+(MIN(M-P,M-Q)-R)+I) -
- $ COS(THETA(I))
- END DO
- *
- * Compute norm( U1'*X11*V1 - D11 ) / ( MAX(1,P,Q)*EPS2 ) .
- *
- RESID = SLANGE( '1', P, Q, XF, LDX, RWORK )
- RESULT( 1 ) = ( RESID / REAL(MAX(1,P,Q)) ) / EPS2
- *
- * Compute norm( U1'*X12*V2 - D12 ) / ( MAX(1,P,M-Q)*EPS2 ) .
- *
- RESID = SLANGE( '1', P, M-Q, XF(1,Q+1), LDX, RWORK )
- RESULT( 2 ) = ( RESID / REAL(MAX(1,P,M-Q)) ) / EPS2
- *
- * Compute norm( U2'*X21*V1 - D21 ) / ( MAX(1,M-P,Q)*EPS2 ) .
- *
- RESID = SLANGE( '1', M-P, Q, XF(P+1,1), LDX, RWORK )
- RESULT( 3 ) = ( RESID / REAL(MAX(1,M-P,Q)) ) / EPS2
- *
- * Compute norm( U2'*X22*V2 - D22 ) / ( MAX(1,M-P,M-Q)*EPS2 ) .
- *
- RESID = SLANGE( '1', M-P, M-Q, XF(P+1,Q+1), LDX, RWORK )
- RESULT( 4 ) = ( RESID / REAL(MAX(1,M-P,M-Q)) ) / EPS2
- *
- * Compute I - U1'*U1
- *
- CALL SLASET( 'Full', P, P, ZERO, ONE, WORK, LDU1 )
- CALL SSYRK( 'Upper', 'Conjugate transpose', P, P, -ONE, U1, LDU1,
- $ ONE, WORK, LDU1 )
- *
- * Compute norm( I - U'*U ) / ( MAX(1,P) * ULP ) .
- *
- RESID = SLANSY( '1', 'Upper', P, WORK, LDU1, RWORK )
- RESULT( 5 ) = ( RESID / REAL(MAX(1,P)) ) / ULP
- *
- * Compute I - U2'*U2
- *
- CALL SLASET( 'Full', M-P, M-P, ZERO, ONE, WORK, LDU2 )
- CALL SSYRK( 'Upper', 'Conjugate transpose', M-P, M-P, -ONE, U2,
- $ LDU2, ONE, WORK, LDU2 )
- *
- * Compute norm( I - U2'*U2 ) / ( MAX(1,M-P) * ULP ) .
- *
- RESID = SLANSY( '1', 'Upper', M-P, WORK, LDU2, RWORK )
- RESULT( 6 ) = ( RESID / REAL(MAX(1,M-P)) ) / ULP
- *
- * Compute I - V1T*V1T'
- *
- CALL SLASET( 'Full', Q, Q, ZERO, ONE, WORK, LDV1T )
- CALL SSYRK( 'Upper', 'No transpose', Q, Q, -ONE, V1T, LDV1T, ONE,
- $ WORK, LDV1T )
- *
- * Compute norm( I - V1T*V1T' ) / ( MAX(1,Q) * ULP ) .
- *
- RESID = SLANSY( '1', 'Upper', Q, WORK, LDV1T, RWORK )
- RESULT( 7 ) = ( RESID / REAL(MAX(1,Q)) ) / ULP
- *
- * Compute I - V2T*V2T'
- *
- CALL SLASET( 'Full', M-Q, M-Q, ZERO, ONE, WORK, LDV2T )
- CALL SSYRK( 'Upper', 'No transpose', M-Q, M-Q, -ONE, V2T, LDV2T,
- $ ONE, WORK, LDV2T )
- *
- * Compute norm( I - V2T*V2T' ) / ( MAX(1,M-Q) * ULP ) .
- *
- RESID = SLANSY( '1', 'Upper', M-Q, WORK, LDV2T, RWORK )
- RESULT( 8 ) = ( RESID / REAL(MAX(1,M-Q)) ) / ULP
- *
- * Check sorting
- *
- RESULT( 9 ) = REALZERO
- DO I = 1, R
- IF( THETA(I).LT.REALZERO .OR. THETA(I).GT.PIOVER2 ) THEN
- RESULT( 9 ) = ULPINV
- END IF
- IF( I.GT.1 ) THEN
- IF ( THETA(I).LT.THETA(I-1) ) THEN
- RESULT( 9 ) = ULPINV
- END IF
- END IF
- END DO
- *
- * The second half of the routine checks the 2-by-1 CSD
- *
- CALL SLASET( 'Full', Q, Q, ZERO, ONE, WORK, LDX )
- CALL SSYRK( 'Upper', 'Conjugate transpose', Q, M, -ONE, X, LDX,
- $ ONE, WORK, LDX )
- IF (M.GT.0) THEN
- EPS2 = MAX( ULP,
- $ SLANGE( '1', Q, Q, WORK, LDX, RWORK ) / REAL( M ) )
- ELSE
- EPS2 = ULP
- END IF
- R = MIN( P, M-P, Q, M-Q )
- *
- * Copy the matrix [X11;X21] to the array XF.
- *
- CALL SLACPY( 'Full', M, Q, X, LDX, XF, LDX )
- *
- * Compute the CSD
- *
- CALL SORCSD2BY1( 'Y', 'Y', 'Y', M, P, Q, XF(1,1), LDX, XF(P+1,1),
- $ LDX, THETA, U1, LDU1, U2, LDU2, V1T, LDV1T, WORK,
- $ LWORK, IWORK, INFO )
- *
- * Compute [X11;X21] := diag(U1,U2)'*[X11;X21]*V1 - [D11;D21]
- *
- CALL SGEMM( 'No transpose', 'Conjugate transpose', P, Q, Q, ONE,
- $ X, LDX, V1T, LDV1T, ZERO, WORK, LDX )
- *
- CALL SGEMM( 'Conjugate transpose', 'No transpose', P, Q, P, ONE,
- $ U1, LDU1, WORK, LDX, ZERO, X, LDX )
- *
- DO I = 1, MIN(P,Q)-R
- X(I,I) = X(I,I) - ONE
- END DO
- DO I = 1, R
- X(MIN(P,Q)-R+I,MIN(P,Q)-R+I) =
- $ X(MIN(P,Q)-R+I,MIN(P,Q)-R+I) - COS(THETA(I))
- END DO
- *
- CALL SGEMM( 'No transpose', 'Conjugate transpose', M-P, Q, Q, ONE,
- $ X(P+1,1), LDX, V1T, LDV1T, ZERO, WORK, LDX )
- *
- CALL SGEMM( 'Conjugate transpose', 'No transpose', M-P, Q, M-P,
- $ ONE, U2, LDU2, WORK, LDX, ZERO, X(P+1,1), LDX )
- *
- DO I = 1, MIN(M-P,Q)-R
- X(M-I+1,Q-I+1) = X(M-I+1,Q-I+1) - ONE
- END DO
- DO I = 1, R
- X(M-(MIN(M-P,Q)-R)+1-I,Q-(MIN(M-P,Q)-R)+1-I) =
- $ X(M-(MIN(M-P,Q)-R)+1-I,Q-(MIN(M-P,Q)-R)+1-I) -
- $ SIN(THETA(R-I+1))
- END DO
- *
- * Compute norm( U1'*X11*V1 - D11 ) / ( MAX(1,P,Q)*EPS2 ) .
- *
- RESID = SLANGE( '1', P, Q, X, LDX, RWORK )
- RESULT( 10 ) = ( RESID / REAL(MAX(1,P,Q)) ) / EPS2
- *
- * Compute norm( U2'*X21*V1 - D21 ) / ( MAX(1,M-P,Q)*EPS2 ) .
- *
- RESID = SLANGE( '1', M-P, Q, X(P+1,1), LDX, RWORK )
- RESULT( 11 ) = ( RESID / REAL(MAX(1,M-P,Q)) ) / EPS2
- *
- * Compute I - U1'*U1
- *
- CALL SLASET( 'Full', P, P, ZERO, ONE, WORK, LDU1 )
- CALL SSYRK( 'Upper', 'Conjugate transpose', P, P, -ONE, U1, LDU1,
- $ ONE, WORK, LDU1 )
- *
- * Compute norm( I - U1'*U1 ) / ( MAX(1,P) * ULP ) .
- *
- RESID = SLANSY( '1', 'Upper', P, WORK, LDU1, RWORK )
- RESULT( 12 ) = ( RESID / REAL(MAX(1,P)) ) / ULP
- *
- * Compute I - U2'*U2
- *
- CALL SLASET( 'Full', M-P, M-P, ZERO, ONE, WORK, LDU2 )
- CALL SSYRK( 'Upper', 'Conjugate transpose', M-P, M-P, -ONE, U2,
- $ LDU2, ONE, WORK, LDU2 )
- *
- * Compute norm( I - U2'*U2 ) / ( MAX(1,M-P) * ULP ) .
- *
- RESID = SLANSY( '1', 'Upper', M-P, WORK, LDU2, RWORK )
- RESULT( 13 ) = ( RESID / REAL(MAX(1,M-P)) ) / ULP
- *
- * Compute I - V1T*V1T'
- *
- CALL SLASET( 'Full', Q, Q, ZERO, ONE, WORK, LDV1T )
- CALL SSYRK( 'Upper', 'No transpose', Q, Q, -ONE, V1T, LDV1T, ONE,
- $ WORK, LDV1T )
- *
- * Compute norm( I - V1T*V1T' ) / ( MAX(1,Q) * ULP ) .
- *
- RESID = SLANSY( '1', 'Upper', Q, WORK, LDV1T, RWORK )
- RESULT( 14 ) = ( RESID / REAL(MAX(1,Q)) ) / ULP
- *
- * Check sorting
- *
- RESULT( 15 ) = REALZERO
- DO I = 1, R
- IF( THETA(I).LT.REALZERO .OR. THETA(I).GT.PIOVER2 ) THEN
- RESULT( 15 ) = ULPINV
- END IF
- IF( I.GT.1 ) THEN
- IF ( THETA(I).LT.THETA(I-1) ) THEN
- RESULT( 15 ) = ULPINV
- END IF
- END IF
- END DO
- *
- RETURN
- *
- * End of SCSDTS
- *
- END
|