|
- *> \brief \b SCHKSB2STG
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SCHKSB2STG( NSIZES, NN, NWDTHS, KK, NTYPES, DOTYPE,
- * ISEED, THRESH, NOUNIT, A, LDA, SD, SE, D1,
- * D2, D3, U, LDU, WORK, LWORK, RESULT, INFO )
- *
- * .. Scalar Arguments ..
- * INTEGER INFO, LDA, LDU, LWORK, NOUNIT, NSIZES, NTYPES,
- * $ NWDTHS
- * REAL THRESH
- * ..
- * .. Array Arguments ..
- * LOGICAL DOTYPE( * )
- * INTEGER ISEED( 4 ), KK( * ), NN( * )
- * REAL A( LDA, * ), RESULT( * ), SD( * ), SE( * ),
- * $ D1( * ), D2( * ), D3( * ),
- * $ U( LDU, * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SCHKSB2STG tests the reduction of a symmetric band matrix to tridiagonal
- *> form, used with the symmetric eigenvalue problem.
- *>
- *> SSBTRD factors a symmetric band matrix A as U S U' , where ' means
- *> transpose, S is symmetric tridiagonal, and U is orthogonal.
- *> SSBTRD can use either just the lower or just the upper triangle
- *> of A; SCHKSB2STG checks both cases.
- *>
- *> SSYTRD_SB2ST factors a symmetric band matrix A as U S U' ,
- *> where ' means transpose, S is symmetric tridiagonal, and U is
- *> orthogonal. SSYTRD_SB2ST can use either just the lower or just
- *> the upper triangle of A; SCHKSB2STG checks both cases.
- *>
- *> SSTEQR factors S as Z D1 Z'.
- *> D1 is the matrix of eigenvalues computed when Z is not computed
- *> and from the S resulting of SSBTRD "U" (used as reference for SSYTRD_SB2ST)
- *> D2 is the matrix of eigenvalues computed when Z is not computed
- *> and from the S resulting of SSYTRD_SB2ST "U".
- *> D3 is the matrix of eigenvalues computed when Z is not computed
- *> and from the S resulting of SSYTRD_SB2ST "L".
- *>
- *> When SCHKSB2STG is called, a number of matrix "sizes" ("n's"), a number
- *> of bandwidths ("k's"), and a number of matrix "types" are
- *> specified. For each size ("n"), each bandwidth ("k") less than or
- *> equal to "n", and each type of matrix, one matrix will be generated
- *> and used to test the symmetric banded reduction routine. For each
- *> matrix, a number of tests will be performed:
- *>
- *> (1) | A - V S V' | / ( |A| n ulp ) computed by SSBTRD with
- *> UPLO='U'
- *>
- *> (2) | I - UU' | / ( n ulp )
- *>
- *> (3) | A - V S V' | / ( |A| n ulp ) computed by SSBTRD with
- *> UPLO='L'
- *>
- *> (4) | I - UU' | / ( n ulp )
- *>
- *> (5) | D1 - D2 | / ( |D1| ulp ) where D1 is computed by
- *> SSBTRD with UPLO='U' and
- *> D2 is computed by
- *> SSYTRD_SB2ST with UPLO='U'
- *>
- *> (6) | D1 - D3 | / ( |D1| ulp ) where D1 is computed by
- *> SSBTRD with UPLO='U' and
- *> D3 is computed by
- *> SSYTRD_SB2ST with UPLO='L'
- *>
- *> The "sizes" are specified by an array NN(1:NSIZES); the value of
- *> each element NN(j) specifies one size.
- *> The "types" are specified by a logical array DOTYPE( 1:NTYPES );
- *> if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
- *> Currently, the list of possible types is:
- *>
- *> (1) The zero matrix.
- *> (2) The identity matrix.
- *>
- *> (3) A diagonal matrix with evenly spaced entries
- *> 1, ..., ULP and random signs.
- *> (ULP = (first number larger than 1) - 1 )
- *> (4) A diagonal matrix with geometrically spaced entries
- *> 1, ..., ULP and random signs.
- *> (5) A diagonal matrix with "clustered" entries 1, ULP, ..., ULP
- *> and random signs.
- *>
- *> (6) Same as (4), but multiplied by SQRT( overflow threshold )
- *> (7) Same as (4), but multiplied by SQRT( underflow threshold )
- *>
- *> (8) A matrix of the form U' D U, where U is orthogonal and
- *> D has evenly spaced entries 1, ..., ULP with random signs
- *> on the diagonal.
- *>
- *> (9) A matrix of the form U' D U, where U is orthogonal and
- *> D has geometrically spaced entries 1, ..., ULP with random
- *> signs on the diagonal.
- *>
- *> (10) A matrix of the form U' D U, where U is orthogonal and
- *> D has "clustered" entries 1, ULP,..., ULP with random
- *> signs on the diagonal.
- *>
- *> (11) Same as (8), but multiplied by SQRT( overflow threshold )
- *> (12) Same as (8), but multiplied by SQRT( underflow threshold )
- *>
- *> (13) Symmetric matrix with random entries chosen from (-1,1).
- *> (14) Same as (13), but multiplied by SQRT( overflow threshold )
- *> (15) Same as (13), but multiplied by SQRT( underflow threshold )
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] NSIZES
- *> \verbatim
- *> NSIZES is INTEGER
- *> The number of sizes of matrices to use. If it is zero,
- *> SCHKSB2STG does nothing. It must be at least zero.
- *> \endverbatim
- *>
- *> \param[in] NN
- *> \verbatim
- *> NN is INTEGER array, dimension (NSIZES)
- *> An array containing the sizes to be used for the matrices.
- *> Zero values will be skipped. The values must be at least
- *> zero.
- *> \endverbatim
- *>
- *> \param[in] NWDTHS
- *> \verbatim
- *> NWDTHS is INTEGER
- *> The number of bandwidths to use. If it is zero,
- *> SCHKSB2STG does nothing. It must be at least zero.
- *> \endverbatim
- *>
- *> \param[in] KK
- *> \verbatim
- *> KK is INTEGER array, dimension (NWDTHS)
- *> An array containing the bandwidths to be used for the band
- *> matrices. The values must be at least zero.
- *> \endverbatim
- *>
- *> \param[in] NTYPES
- *> \verbatim
- *> NTYPES is INTEGER
- *> The number of elements in DOTYPE. If it is zero, SCHKSB2STG
- *> does nothing. It must be at least zero. If it is MAXTYP+1
- *> and NSIZES is 1, then an additional type, MAXTYP+1 is
- *> defined, which is to use whatever matrix is in A. This
- *> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
- *> DOTYPE(MAXTYP+1) is .TRUE. .
- *> \endverbatim
- *>
- *> \param[in] DOTYPE
- *> \verbatim
- *> DOTYPE is LOGICAL array, dimension (NTYPES)
- *> If DOTYPE(j) is .TRUE., then for each size in NN a
- *> matrix of that size and of type j will be generated.
- *> If NTYPES is smaller than the maximum number of types
- *> defined (PARAMETER MAXTYP), then types NTYPES+1 through
- *> MAXTYP will not be generated. If NTYPES is larger
- *> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
- *> will be ignored.
- *> \endverbatim
- *>
- *> \param[in,out] ISEED
- *> \verbatim
- *> ISEED is INTEGER array, dimension (4)
- *> On entry ISEED specifies the seed of the random number
- *> generator. The array elements should be between 0 and 4095;
- *> if not they will be reduced mod 4096. Also, ISEED(4) must
- *> be odd. The random number generator uses a linear
- *> congruential sequence limited to small integers, and so
- *> should produce machine independent random numbers. The
- *> values of ISEED are changed on exit, and can be used in the
- *> next call to SCHKSB2STG to continue the same random number
- *> sequence.
- *> \endverbatim
- *>
- *> \param[in] THRESH
- *> \verbatim
- *> THRESH is REAL
- *> A test will count as "failed" if the "error", computed as
- *> described above, exceeds THRESH. Note that the error
- *> is scaled to be O(1), so THRESH should be a reasonably
- *> small multiple of 1, e.g., 10 or 100. In particular,
- *> it should not depend on the precision (single vs. double)
- *> or the size of the matrix. It must be at least zero.
- *> \endverbatim
- *>
- *> \param[in] NOUNIT
- *> \verbatim
- *> NOUNIT is INTEGER
- *> The FORTRAN unit number for printing out error messages
- *> (e.g., if a routine returns IINFO not equal to 0.)
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is REAL array, dimension
- *> (LDA, max(NN))
- *> Used to hold the matrix whose eigenvalues are to be
- *> computed.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of A. It must be at least 2 (not 1!)
- *> and at least max( KK )+1.
- *> \endverbatim
- *>
- *> \param[out] SD
- *> \verbatim
- *> SD is REAL array, dimension (max(NN))
- *> Used to hold the diagonal of the tridiagonal matrix computed
- *> by SSBTRD.
- *> \endverbatim
- *>
- *> \param[out] SE
- *> \verbatim
- *> SE is REAL array, dimension (max(NN))
- *> Used to hold the off-diagonal of the tridiagonal matrix
- *> computed by SSBTRD.
- *> \endverbatim
- *>
- *> \param[out] D1
- *> \verbatim
- *> D1 is REAL array, dimension (max(NN))
- *> \endverbatim
- *>
- *> \param[out] D2
- *> \verbatim
- *> D2 is REAL array, dimension (max(NN))
- *> \endverbatim
- *>
- *> \param[out] D3
- *> \verbatim
- *> D3 is REAL array, dimension (max(NN))
- *> \endverbatim
- *>
- *> \param[out] U
- *> \verbatim
- *> U is REAL array, dimension (LDU, max(NN))
- *> Used to hold the orthogonal matrix computed by SSBTRD.
- *> \endverbatim
- *>
- *> \param[in] LDU
- *> \verbatim
- *> LDU is INTEGER
- *> The leading dimension of U. It must be at least 1
- *> and at least max( NN ).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is REAL array, dimension (LWORK)
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The number of entries in WORK. This must be at least
- *> max( LDA+1, max(NN)+1 )*max(NN).
- *> \endverbatim
- *>
- *> \param[out] RESULT
- *> \verbatim
- *> RESULT is REAL array, dimension (4)
- *> The values computed by the tests described above.
- *> The values are currently limited to 1/ulp, to avoid
- *> overflow.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> If 0, then everything ran OK.
- *>
- *>-----------------------------------------------------------------------
- *>
- *> Some Local Variables and Parameters:
- *> ---- ----- --------- --- ----------
- *> ZERO, ONE Real 0 and 1.
- *> MAXTYP The number of types defined.
- *> NTEST The number of tests performed, or which can
- *> be performed so far, for the current matrix.
- *> NTESTT The total number of tests performed so far.
- *> NMAX Largest value in NN.
- *> NMATS The number of matrices generated so far.
- *> NERRS The number of tests which have exceeded THRESH
- *> so far.
- *> COND, IMODE Values to be passed to the matrix generators.
- *> ANORM Norm of A; passed to matrix generators.
- *>
- *> OVFL, UNFL Overflow and underflow thresholds.
- *> ULP, ULPINV Finest relative precision and its inverse.
- *> RTOVFL, RTUNFL Square roots of the previous 2 values.
- *> The following four arrays decode JTYPE:
- *> KTYPE(j) The general type (1-10) for type "j".
- *> KMODE(j) The MODE value to be passed to the matrix
- *> generator for type "j".
- *> KMAGN(j) The order of magnitude ( O(1),
- *> O(overflow^(1/2) ), O(underflow^(1/2) )
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup single_eig
- *
- * =====================================================================
- SUBROUTINE SCHKSB2STG( NSIZES, NN, NWDTHS, KK, NTYPES, DOTYPE,
- $ ISEED, THRESH, NOUNIT, A, LDA, SD, SE, D1,
- $ D2, D3, U, LDU, WORK, LWORK, RESULT, INFO )
- *
- * -- LAPACK test routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER INFO, LDA, LDU, LWORK, NOUNIT, NSIZES, NTYPES,
- $ NWDTHS
- REAL THRESH
- * ..
- * .. Array Arguments ..
- LOGICAL DOTYPE( * )
- INTEGER ISEED( 4 ), KK( * ), NN( * )
- REAL A( LDA, * ), RESULT( * ), SD( * ), SE( * ),
- $ D1( * ), D2( * ), D3( * ),
- $ U( LDU, * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ZERO, ONE, TWO, TEN
- PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0, TWO = 2.0E0,
- $ TEN = 10.0E0 )
- REAL HALF
- PARAMETER ( HALF = ONE / TWO )
- INTEGER MAXTYP
- PARAMETER ( MAXTYP = 15 )
- * ..
- * .. Local Scalars ..
- LOGICAL BADNN, BADNNB
- INTEGER I, IINFO, IMODE, ITYPE, J, JC, JCOL, JR, JSIZE,
- $ JTYPE, JWIDTH, K, KMAX, LH, LW, MTYPES, N,
- $ NERRS, NMATS, NMAX, NTEST, NTESTT
- REAL ANINV, ANORM, COND, OVFL, RTOVFL, RTUNFL,
- $ TEMP1, TEMP2, TEMP3, TEMP4, ULP, ULPINV, UNFL
- * ..
- * .. Local Arrays ..
- INTEGER IDUMMA( 1 ), IOLDSD( 4 ), KMAGN( MAXTYP ),
- $ KMODE( MAXTYP ), KTYPE( MAXTYP )
- * ..
- * .. External Functions ..
- REAL SLAMCH
- EXTERNAL SLAMCH
- * ..
- * .. External Subroutines ..
- EXTERNAL SLACPY, SLASET, SLASUM, SLATMR, SLATMS, SSBT21,
- $ SSBTRD, XERBLA, SSYTRD_SB2ST, SSTEQR
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, REAL, MAX, MIN, SQRT
- * ..
- * .. Data statements ..
- DATA KTYPE / 1, 2, 5*4, 5*5, 3*8 /
- DATA KMAGN / 2*1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 3, 1,
- $ 2, 3 /
- DATA KMODE / 2*0, 4, 3, 1, 4, 4, 4, 3, 1, 4, 4, 0,
- $ 0, 0 /
- * ..
- * .. Executable Statements ..
- *
- * Check for errors
- *
- NTESTT = 0
- INFO = 0
- *
- * Important constants
- *
- BADNN = .FALSE.
- NMAX = 1
- DO 10 J = 1, NSIZES
- NMAX = MAX( NMAX, NN( J ) )
- IF( NN( J ).LT.0 )
- $ BADNN = .TRUE.
- 10 CONTINUE
- *
- BADNNB = .FALSE.
- KMAX = 0
- DO 20 J = 1, NSIZES
- KMAX = MAX( KMAX, KK( J ) )
- IF( KK( J ).LT.0 )
- $ BADNNB = .TRUE.
- 20 CONTINUE
- KMAX = MIN( NMAX-1, KMAX )
- *
- * Check for errors
- *
- IF( NSIZES.LT.0 ) THEN
- INFO = -1
- ELSE IF( BADNN ) THEN
- INFO = -2
- ELSE IF( NWDTHS.LT.0 ) THEN
- INFO = -3
- ELSE IF( BADNNB ) THEN
- INFO = -4
- ELSE IF( NTYPES.LT.0 ) THEN
- INFO = -5
- ELSE IF( LDA.LT.KMAX+1 ) THEN
- INFO = -11
- ELSE IF( LDU.LT.NMAX ) THEN
- INFO = -15
- ELSE IF( ( MAX( LDA, NMAX )+1 )*NMAX.GT.LWORK ) THEN
- INFO = -17
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'SCHKSB2STG', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 .OR. NWDTHS.EQ.0 )
- $ RETURN
- *
- * More Important constants
- *
- UNFL = SLAMCH( 'Safe minimum' )
- OVFL = ONE / UNFL
- ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' )
- ULPINV = ONE / ULP
- RTUNFL = SQRT( UNFL )
- RTOVFL = SQRT( OVFL )
- *
- * Loop over sizes, types
- *
- NERRS = 0
- NMATS = 0
- *
- DO 190 JSIZE = 1, NSIZES
- N = NN( JSIZE )
- ANINV = ONE / REAL( MAX( 1, N ) )
- *
- DO 180 JWIDTH = 1, NWDTHS
- K = KK( JWIDTH )
- IF( K.GT.N )
- $ GO TO 180
- K = MAX( 0, MIN( N-1, K ) )
- *
- IF( NSIZES.NE.1 ) THEN
- MTYPES = MIN( MAXTYP, NTYPES )
- ELSE
- MTYPES = MIN( MAXTYP+1, NTYPES )
- END IF
- *
- DO 170 JTYPE = 1, MTYPES
- IF( .NOT.DOTYPE( JTYPE ) )
- $ GO TO 170
- NMATS = NMATS + 1
- NTEST = 0
- *
- DO 30 J = 1, 4
- IOLDSD( J ) = ISEED( J )
- 30 CONTINUE
- *
- * Compute "A".
- * Store as "Upper"; later, we will copy to other format.
- *
- * Control parameters:
- *
- * KMAGN KMODE KTYPE
- * =1 O(1) clustered 1 zero
- * =2 large clustered 2 identity
- * =3 small exponential (none)
- * =4 arithmetic diagonal, (w/ eigenvalues)
- * =5 random log symmetric, w/ eigenvalues
- * =6 random (none)
- * =7 random diagonal
- * =8 random symmetric
- * =9 positive definite
- * =10 diagonally dominant tridiagonal
- *
- IF( MTYPES.GT.MAXTYP )
- $ GO TO 100
- *
- ITYPE = KTYPE( JTYPE )
- IMODE = KMODE( JTYPE )
- *
- * Compute norm
- *
- GO TO ( 40, 50, 60 )KMAGN( JTYPE )
- *
- 40 CONTINUE
- ANORM = ONE
- GO TO 70
- *
- 50 CONTINUE
- ANORM = ( RTOVFL*ULP )*ANINV
- GO TO 70
- *
- 60 CONTINUE
- ANORM = RTUNFL*N*ULPINV
- GO TO 70
- *
- 70 CONTINUE
- *
- CALL SLASET( 'Full', LDA, N, ZERO, ZERO, A, LDA )
- IINFO = 0
- IF( JTYPE.LE.15 ) THEN
- COND = ULPINV
- ELSE
- COND = ULPINV*ANINV / TEN
- END IF
- *
- * Special Matrices -- Identity & Jordan block
- *
- * Zero
- *
- IF( ITYPE.EQ.1 ) THEN
- IINFO = 0
- *
- ELSE IF( ITYPE.EQ.2 ) THEN
- *
- * Identity
- *
- DO 80 JCOL = 1, N
- A( K+1, JCOL ) = ANORM
- 80 CONTINUE
- *
- ELSE IF( ITYPE.EQ.4 ) THEN
- *
- * Diagonal Matrix, [Eigen]values Specified
- *
- CALL SLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND,
- $ ANORM, 0, 0, 'Q', A( K+1, 1 ), LDA,
- $ WORK( N+1 ), IINFO )
- *
- ELSE IF( ITYPE.EQ.5 ) THEN
- *
- * Symmetric, eigenvalues specified
- *
- CALL SLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND,
- $ ANORM, K, K, 'Q', A, LDA, WORK( N+1 ),
- $ IINFO )
- *
- ELSE IF( ITYPE.EQ.7 ) THEN
- *
- * Diagonal, random eigenvalues
- *
- CALL SLATMR( N, N, 'S', ISEED, 'S', WORK, 6, ONE, ONE,
- $ 'T', 'N', WORK( N+1 ), 1, ONE,
- $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0,
- $ ZERO, ANORM, 'Q', A( K+1, 1 ), LDA,
- $ IDUMMA, IINFO )
- *
- ELSE IF( ITYPE.EQ.8 ) THEN
- *
- * Symmetric, random eigenvalues
- *
- CALL SLATMR( N, N, 'S', ISEED, 'S', WORK, 6, ONE, ONE,
- $ 'T', 'N', WORK( N+1 ), 1, ONE,
- $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, K, K,
- $ ZERO, ANORM, 'Q', A, LDA, IDUMMA, IINFO )
- *
- ELSE IF( ITYPE.EQ.9 ) THEN
- *
- * Positive definite, eigenvalues specified.
- *
- CALL SLATMS( N, N, 'S', ISEED, 'P', WORK, IMODE, COND,
- $ ANORM, K, K, 'Q', A, LDA, WORK( N+1 ),
- $ IINFO )
- *
- ELSE IF( ITYPE.EQ.10 ) THEN
- *
- * Positive definite tridiagonal, eigenvalues specified.
- *
- IF( N.GT.1 )
- $ K = MAX( 1, K )
- CALL SLATMS( N, N, 'S', ISEED, 'P', WORK, IMODE, COND,
- $ ANORM, 1, 1, 'Q', A( K, 1 ), LDA,
- $ WORK( N+1 ), IINFO )
- DO 90 I = 2, N
- TEMP1 = ABS( A( K, I ) ) /
- $ SQRT( ABS( A( K+1, I-1 )*A( K+1, I ) ) )
- IF( TEMP1.GT.HALF ) THEN
- A( K, I ) = HALF*SQRT( ABS( A( K+1,
- $ I-1 )*A( K+1, I ) ) )
- END IF
- 90 CONTINUE
- *
- ELSE
- *
- IINFO = 1
- END IF
- *
- IF( IINFO.NE.0 ) THEN
- WRITE( NOUNIT, FMT = 9999 )'Generator', IINFO, N,
- $ JTYPE, IOLDSD
- INFO = ABS( IINFO )
- RETURN
- END IF
- *
- 100 CONTINUE
- *
- * Call SSBTRD to compute S and U from upper triangle.
- *
- CALL SLACPY( ' ', K+1, N, A, LDA, WORK, LDA )
- *
- NTEST = 1
- CALL SSBTRD( 'V', 'U', N, K, WORK, LDA, SD, SE, U, LDU,
- $ WORK( LDA*N+1 ), IINFO )
- *
- IF( IINFO.NE.0 ) THEN
- WRITE( NOUNIT, FMT = 9999 )'SSBTRD(U)', IINFO, N,
- $ JTYPE, IOLDSD
- INFO = ABS( IINFO )
- IF( IINFO.LT.0 ) THEN
- RETURN
- ELSE
- RESULT( 1 ) = ULPINV
- GO TO 150
- END IF
- END IF
- *
- * Do tests 1 and 2
- *
- CALL SSBT21( 'Upper', N, K, 1, A, LDA, SD, SE, U, LDU,
- $ WORK, RESULT( 1 ) )
- *
- * Before converting A into lower for SSBTRD, run SSYTRD_SB2ST
- * otherwise matrix A will be converted to lower and then need
- * to be converted back to upper in order to run the upper case
- * ofSSYTRD_SB2ST
- *
- * Compute D1 the eigenvalues resulting from the tridiagonal
- * form using the SSBTRD and used as reference to compare
- * with the SSYTRD_SB2ST routine
- *
- * Compute D1 from the SSBTRD and used as reference for the
- * SSYTRD_SB2ST
- *
- CALL SCOPY( N, SD, 1, D1, 1 )
- IF( N.GT.0 )
- $ CALL SCOPY( N-1, SE, 1, WORK, 1 )
- *
- CALL SSTEQR( 'N', N, D1, WORK, WORK( N+1 ), LDU,
- $ WORK( N+1 ), IINFO )
- IF( IINFO.NE.0 ) THEN
- WRITE( NOUNIT, FMT = 9999 )'SSTEQR(N)', IINFO, N,
- $ JTYPE, IOLDSD
- INFO = ABS( IINFO )
- IF( IINFO.LT.0 ) THEN
- RETURN
- ELSE
- RESULT( 5 ) = ULPINV
- GO TO 150
- END IF
- END IF
- *
- * SSYTRD_SB2ST Upper case is used to compute D2.
- * Note to set SD and SE to zero to be sure not reusing
- * the one from above. Compare it with D1 computed
- * using the SSBTRD.
- *
- CALL SLASET( 'Full', N, 1, ZERO, ZERO, SD, N )
- CALL SLASET( 'Full', N, 1, ZERO, ZERO, SE, N )
- CALL SLACPY( ' ', K+1, N, A, LDA, U, LDU )
- LH = MAX(1, 4*N)
- LW = LWORK - LH
- CALL SSYTRD_SB2ST( 'N', 'N', "U", N, K, U, LDU, SD, SE,
- $ WORK, LH, WORK( LH+1 ), LW, IINFO )
- *
- * Compute D2 from the SSYTRD_SB2ST Upper case
- *
- CALL SCOPY( N, SD, 1, D2, 1 )
- IF( N.GT.0 )
- $ CALL SCOPY( N-1, SE, 1, WORK, 1 )
- *
- CALL SSTEQR( 'N', N, D2, WORK, WORK( N+1 ), LDU,
- $ WORK( N+1 ), IINFO )
- IF( IINFO.NE.0 ) THEN
- WRITE( NOUNIT, FMT = 9999 )'SSTEQR(N)', IINFO, N,
- $ JTYPE, IOLDSD
- INFO = ABS( IINFO )
- IF( IINFO.LT.0 ) THEN
- RETURN
- ELSE
- RESULT( 5 ) = ULPINV
- GO TO 150
- END IF
- END IF
- *
- * Convert A from Upper-Triangle-Only storage to
- * Lower-Triangle-Only storage.
- *
- DO 120 JC = 1, N
- DO 110 JR = 0, MIN( K, N-JC )
- A( JR+1, JC ) = A( K+1-JR, JC+JR )
- 110 CONTINUE
- 120 CONTINUE
- DO 140 JC = N + 1 - K, N
- DO 130 JR = MIN( K, N-JC ) + 1, K
- A( JR+1, JC ) = ZERO
- 130 CONTINUE
- 140 CONTINUE
- *
- * Call SSBTRD to compute S and U from lower triangle
- *
- CALL SLACPY( ' ', K+1, N, A, LDA, WORK, LDA )
- *
- NTEST = 3
- CALL SSBTRD( 'V', 'L', N, K, WORK, LDA, SD, SE, U, LDU,
- $ WORK( LDA*N+1 ), IINFO )
- *
- IF( IINFO.NE.0 ) THEN
- WRITE( NOUNIT, FMT = 9999 )'SSBTRD(L)', IINFO, N,
- $ JTYPE, IOLDSD
- INFO = ABS( IINFO )
- IF( IINFO.LT.0 ) THEN
- RETURN
- ELSE
- RESULT( 3 ) = ULPINV
- GO TO 150
- END IF
- END IF
- NTEST = 4
- *
- * Do tests 3 and 4
- *
- CALL SSBT21( 'Lower', N, K, 1, A, LDA, SD, SE, U, LDU,
- $ WORK, RESULT( 3 ) )
- *
- * SSYTRD_SB2ST Lower case is used to compute D3.
- * Note to set SD and SE to zero to be sure not reusing
- * the one from above. Compare it with D1 computed
- * using the SSBTRD.
- *
- CALL SLASET( 'Full', N, 1, ZERO, ZERO, SD, N )
- CALL SLASET( 'Full', N, 1, ZERO, ZERO, SE, N )
- CALL SLACPY( ' ', K+1, N, A, LDA, U, LDU )
- LH = MAX(1, 4*N)
- LW = LWORK - LH
- CALL SSYTRD_SB2ST( 'N', 'N', "L", N, K, U, LDU, SD, SE,
- $ WORK, LH, WORK( LH+1 ), LW, IINFO )
- *
- * Compute D3 from the 2-stage Upper case
- *
- CALL SCOPY( N, SD, 1, D3, 1 )
- IF( N.GT.0 )
- $ CALL SCOPY( N-1, SE, 1, WORK, 1 )
- *
- CALL SSTEQR( 'N', N, D3, WORK, WORK( N+1 ), LDU,
- $ WORK( N+1 ), IINFO )
- IF( IINFO.NE.0 ) THEN
- WRITE( NOUNIT, FMT = 9999 )'SSTEQR(N)', IINFO, N,
- $ JTYPE, IOLDSD
- INFO = ABS( IINFO )
- IF( IINFO.LT.0 ) THEN
- RETURN
- ELSE
- RESULT( 6 ) = ULPINV
- GO TO 150
- END IF
- END IF
- *
- *
- * Do Tests 3 and 4 which are similar to 11 and 12 but with the
- * D1 computed using the standard 1-stage reduction as reference
- *
- NTEST = 6
- TEMP1 = ZERO
- TEMP2 = ZERO
- TEMP3 = ZERO
- TEMP4 = ZERO
- *
- DO 151 J = 1, N
- TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D2( J ) ) )
- TEMP2 = MAX( TEMP2, ABS( D1( J )-D2( J ) ) )
- TEMP3 = MAX( TEMP3, ABS( D1( J ) ), ABS( D3( J ) ) )
- TEMP4 = MAX( TEMP4, ABS( D1( J )-D3( J ) ) )
- 151 CONTINUE
- *
- RESULT(5) = TEMP2 / MAX( UNFL, ULP*MAX( TEMP1, TEMP2 ) )
- RESULT(6) = TEMP4 / MAX( UNFL, ULP*MAX( TEMP3, TEMP4 ) )
- *
- * End of Loop -- Check for RESULT(j) > THRESH
- *
- 150 CONTINUE
- NTESTT = NTESTT + NTEST
- *
- * Print out tests which fail.
- *
- DO 160 JR = 1, NTEST
- IF( RESULT( JR ).GE.THRESH ) THEN
- *
- * If this is the first test to fail,
- * print a header to the data file.
- *
- IF( NERRS.EQ.0 ) THEN
- WRITE( NOUNIT, FMT = 9998 )'SSB'
- WRITE( NOUNIT, FMT = 9997 )
- WRITE( NOUNIT, FMT = 9996 )
- WRITE( NOUNIT, FMT = 9995 )'Symmetric'
- WRITE( NOUNIT, FMT = 9994 )'orthogonal', '''',
- $ 'transpose', ( '''', J = 1, 6 )
- END IF
- NERRS = NERRS + 1
- WRITE( NOUNIT, FMT = 9993 )N, K, IOLDSD, JTYPE,
- $ JR, RESULT( JR )
- END IF
- 160 CONTINUE
- *
- 170 CONTINUE
- 180 CONTINUE
- 190 CONTINUE
- *
- * Summary
- *
- CALL SLASUM( 'SSB', NOUNIT, NERRS, NTESTT )
- RETURN
- *
- 9999 FORMAT( ' SCHKSB2STG: ', A, ' returned INFO=', I6, '.', / 9X,
- $ 'N=', I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5,
- $ ')' )
- *
- 9998 FORMAT( / 1X, A3,
- $ ' -- Real Symmetric Banded Tridiagonal Reduction Routines' )
- 9997 FORMAT( ' Matrix types (see SCHKSB2STG for details): ' )
- *
- 9996 FORMAT( / ' Special Matrices:',
- $ / ' 1=Zero matrix. ',
- $ ' 5=Diagonal: clustered entries.',
- $ / ' 2=Identity matrix. ',
- $ ' 6=Diagonal: large, evenly spaced.',
- $ / ' 3=Diagonal: evenly spaced entries. ',
- $ ' 7=Diagonal: small, evenly spaced.',
- $ / ' 4=Diagonal: geometr. spaced entries.' )
- 9995 FORMAT( ' Dense ', A, ' Banded Matrices:',
- $ / ' 8=Evenly spaced eigenvals. ',
- $ ' 12=Small, evenly spaced eigenvals.',
- $ / ' 9=Geometrically spaced eigenvals. ',
- $ ' 13=Matrix with random O(1) entries.',
- $ / ' 10=Clustered eigenvalues. ',
- $ ' 14=Matrix with large random entries.',
- $ / ' 11=Large, evenly spaced eigenvals. ',
- $ ' 15=Matrix with small random entries.' )
- *
- 9994 FORMAT( / ' Tests performed: (S is Tridiag, U is ', A, ',',
- $ / 20X, A, ' means ', A, '.', / ' UPLO=''U'':',
- $ / ' 1= | A - U S U', A1, ' | / ( |A| n ulp ) ',
- $ ' 2= | I - U U', A1, ' | / ( n ulp )', / ' UPLO=''L'':',
- $ / ' 3= | A - U S U', A1, ' | / ( |A| n ulp ) ',
- $ ' 4= | I - U U', A1, ' | / ( n ulp )' / ' Eig check:',
- $ /' 5= | D1 - D2', '', ' | / ( |D1| ulp ) ',
- $ ' 6= | D1 - D3', '', ' | / ( |D1| ulp ) ' )
- 9993 FORMAT( ' N=', I5, ', K=', I4, ', seed=', 4( I4, ',' ), ' type ',
- $ I2, ', test(', I2, ')=', G10.3 )
- *
- * End of SCHKSB2STG
- *
- END
|