|
- *> \brief \b DGET02
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DGET02( TRANS, M, N, NRHS, A, LDA, X, LDX, B, LDB,
- * RWORK, RESID )
- *
- * .. Scalar Arguments ..
- * CHARACTER TRANS
- * INTEGER LDA, LDB, LDX, M, N, NRHS
- * DOUBLE PRECISION RESID
- * ..
- * .. Array Arguments ..
- * DOUBLE PRECISION A( LDA, * ), B( LDB, * ), RWORK( * ),
- * $ X( LDX, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DGET02 computes the residual for a solution of a system of linear
- *> equations op(A)*X = B:
- *> RESID = norm(B - op(A)*X) / ( norm(op(A)) * norm(X) * EPS ),
- *> where op(A) = A or A**T, depending on TRANS, and EPS is the
- *> machine epsilon.
- *> The norm used is the 1-norm.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] TRANS
- *> \verbatim
- *> TRANS is CHARACTER*1
- *> Specifies the form of the system of equations:
- *> = 'N': A * X = B (No transpose)
- *> = 'T': A**T * X = B (Transpose)
- *> = 'C': A**H * X = B (Conjugate transpose = Transpose)
- *> \endverbatim
- *>
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the matrix A. M >= 0.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] NRHS
- *> \verbatim
- *> NRHS is INTEGER
- *> The number of columns of B, the matrix of right hand sides.
- *> NRHS >= 0.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is DOUBLE PRECISION array, dimension (LDA,N)
- *> The original M x N matrix A.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,M).
- *> \endverbatim
- *>
- *> \param[in] X
- *> \verbatim
- *> X is DOUBLE PRECISION array, dimension (LDX,NRHS)
- *> The computed solution vectors for the system of linear
- *> equations.
- *> \endverbatim
- *>
- *> \param[in] LDX
- *> \verbatim
- *> LDX is INTEGER
- *> The leading dimension of the array X. If TRANS = 'N',
- *> LDX >= max(1,N); if TRANS = 'T' or 'C', LDX >= max(1,M).
- *> \endverbatim
- *>
- *> \param[in,out] B
- *> \verbatim
- *> B is DOUBLE PRECISION array, dimension (LDB,NRHS)
- *> On entry, the right hand side vectors for the system of
- *> linear equations.
- *> On exit, B is overwritten with the difference B - A*X.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the array B. IF TRANS = 'N',
- *> LDB >= max(1,M); if TRANS = 'T' or 'C', LDB >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is DOUBLE PRECISION array, dimension (M)
- *> \endverbatim
- *>
- *> \param[out] RESID
- *> \verbatim
- *> RESID is DOUBLE PRECISION
- *> The maximum over the number of right hand sides of
- *> norm(B - op(A)*X) / ( norm(op(A)) * norm(X) * EPS ).
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup double_eig
- *
- * =====================================================================
- SUBROUTINE DGET02( TRANS, M, N, NRHS, A, LDA, X, LDX, B, LDB,
- $ RWORK, RESID )
- *
- * -- LAPACK test routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER TRANS
- INTEGER LDA, LDB, LDX, M, N, NRHS
- DOUBLE PRECISION RESID
- * ..
- * .. Array Arguments ..
- DOUBLE PRECISION A( LDA, * ), B( LDB, * ), RWORK( * ),
- $ X( LDX, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ZERO, ONE
- PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
- * ..
- * .. Local Scalars ..
- INTEGER J, N1, N2
- DOUBLE PRECISION ANORM, BNORM, EPS, XNORM
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- DOUBLE PRECISION DASUM, DLAMCH, DLANGE
- EXTERNAL LSAME, DASUM, DLAMCH, DLANGE
- * ..
- * .. External Subroutines ..
- EXTERNAL DGEMM
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX
- * ..
- * .. Executable Statements ..
- *
- * Quick exit if M = 0 or N = 0 or NRHS = 0
- *
- IF( M.LE.0 .OR. N.LE.0 .OR. NRHS.EQ.0 ) THEN
- RESID = ZERO
- RETURN
- END IF
- *
- IF( LSAME( TRANS, 'T' ) .OR. LSAME( TRANS, 'C' ) ) THEN
- N1 = N
- N2 = M
- ELSE
- N1 = M
- N2 = N
- END IF
- *
- * Exit with RESID = 1/EPS if ANORM = 0.
- *
- EPS = DLAMCH( 'Epsilon' )
- IF( LSAME( TRANS, 'N' ) ) THEN
- ANORM = DLANGE( '1', M, N, A, LDA, RWORK )
- ELSE
- ANORM = DLANGE( 'I', M, N, A, LDA, RWORK )
- END IF
- IF( ANORM.LE.ZERO ) THEN
- RESID = ONE / EPS
- RETURN
- END IF
- *
- * Compute B - op(A)*X and store in B.
- *
- CALL DGEMM( TRANS, 'No transpose', N1, NRHS, N2, -ONE, A, LDA, X,
- $ LDX, ONE, B, LDB )
- *
- * Compute the maximum over the number of right hand sides of
- * norm(B - op(A)*X) / ( norm(op(A)) * norm(X) * EPS ) .
- *
- RESID = ZERO
- DO 10 J = 1, NRHS
- BNORM = DASUM( N1, B( 1, J ), 1 )
- XNORM = DASUM( N2, X( 1, J ), 1 )
- IF( XNORM.LE.ZERO ) THEN
- RESID = ONE / EPS
- ELSE
- RESID = MAX( RESID, ( ( BNORM / ANORM ) / XNORM ) / EPS )
- END IF
- 10 CONTINUE
- *
- RETURN
- *
- * End of DGET02
- *
- END
|