|
- *> \brief \b CSTT22
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CSTT22( N, M, KBAND, AD, AE, SD, SE, U, LDU, WORK,
- * LDWORK, RWORK, RESULT )
- *
- * .. Scalar Arguments ..
- * INTEGER KBAND, LDU, LDWORK, M, N
- * ..
- * .. Array Arguments ..
- * REAL AD( * ), AE( * ), RESULT( 2 ), RWORK( * ),
- * $ SD( * ), SE( * )
- * COMPLEX U( LDU, * ), WORK( LDWORK, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CSTT22 checks a set of M eigenvalues and eigenvectors,
- *>
- *> A U = U S
- *>
- *> where A is Hermitian tridiagonal, the columns of U are unitary,
- *> and S is diagonal (if KBAND=0) or Hermitian tridiagonal (if KBAND=1).
- *> Two tests are performed:
- *>
- *> RESULT(1) = | U* A U - S | / ( |A| m ulp )
- *>
- *> RESULT(2) = | I - U*U | / ( m ulp )
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The size of the matrix. If it is zero, CSTT22 does nothing.
- *> It must be at least zero.
- *> \endverbatim
- *>
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of eigenpairs to check. If it is zero, CSTT22
- *> does nothing. It must be at least zero.
- *> \endverbatim
- *>
- *> \param[in] KBAND
- *> \verbatim
- *> KBAND is INTEGER
- *> The bandwidth of the matrix S. It may only be zero or one.
- *> If zero, then S is diagonal, and SE is not referenced. If
- *> one, then S is Hermitian tri-diagonal.
- *> \endverbatim
- *>
- *> \param[in] AD
- *> \verbatim
- *> AD is REAL array, dimension (N)
- *> The diagonal of the original (unfactored) matrix A. A is
- *> assumed to be Hermitian tridiagonal.
- *> \endverbatim
- *>
- *> \param[in] AE
- *> \verbatim
- *> AE is REAL array, dimension (N)
- *> The off-diagonal of the original (unfactored) matrix A. A
- *> is assumed to be Hermitian tridiagonal. AE(1) is ignored,
- *> AE(2) is the (1,2) and (2,1) element, etc.
- *> \endverbatim
- *>
- *> \param[in] SD
- *> \verbatim
- *> SD is REAL array, dimension (N)
- *> The diagonal of the (Hermitian tri-) diagonal matrix S.
- *> \endverbatim
- *>
- *> \param[in] SE
- *> \verbatim
- *> SE is REAL array, dimension (N)
- *> The off-diagonal of the (Hermitian tri-) diagonal matrix S.
- *> Not referenced if KBSND=0. If KBAND=1, then AE(1) is
- *> ignored, SE(2) is the (1,2) and (2,1) element, etc.
- *> \endverbatim
- *>
- *> \param[in] U
- *> \verbatim
- *> U is REAL array, dimension (LDU, N)
- *> The unitary matrix in the decomposition.
- *> \endverbatim
- *>
- *> \param[in] LDU
- *> \verbatim
- *> LDU is INTEGER
- *> The leading dimension of U. LDU must be at least N.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX array, dimension (LDWORK, M+1)
- *> \endverbatim
- *>
- *> \param[in] LDWORK
- *> \verbatim
- *> LDWORK is INTEGER
- *> The leading dimension of WORK. LDWORK must be at least
- *> max(1,M).
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is REAL array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] RESULT
- *> \verbatim
- *> RESULT is REAL array, dimension (2)
- *> The values computed by the two tests described above. The
- *> values are currently limited to 1/ulp, to avoid overflow.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complex_eig
- *
- * =====================================================================
- SUBROUTINE CSTT22( N, M, KBAND, AD, AE, SD, SE, U, LDU, WORK,
- $ LDWORK, RWORK, RESULT )
- *
- * -- LAPACK test routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER KBAND, LDU, LDWORK, M, N
- * ..
- * .. Array Arguments ..
- REAL AD( * ), AE( * ), RESULT( 2 ), RWORK( * ),
- $ SD( * ), SE( * )
- COMPLEX U( LDU, * ), WORK( LDWORK, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ZERO, ONE
- PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 )
- COMPLEX CZERO, CONE
- PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ),
- $ CONE = ( 1.0E+0, 0.0E+0 ) )
- * ..
- * .. Local Scalars ..
- INTEGER I, J, K
- REAL ANORM, ULP, UNFL, WNORM
- COMPLEX AUKJ
- * ..
- * .. External Functions ..
- REAL CLANGE, CLANSY, SLAMCH
- EXTERNAL CLANGE, CLANSY, SLAMCH
- * ..
- * .. External Subroutines ..
- EXTERNAL CGEMM
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, MAX, MIN, REAL
- * ..
- * .. Executable Statements ..
- *
- RESULT( 1 ) = ZERO
- RESULT( 2 ) = ZERO
- IF( N.LE.0 .OR. M.LE.0 )
- $ RETURN
- *
- UNFL = SLAMCH( 'Safe minimum' )
- ULP = SLAMCH( 'Epsilon' )
- *
- * Do Test 1
- *
- * Compute the 1-norm of A.
- *
- IF( N.GT.1 ) THEN
- ANORM = ABS( AD( 1 ) ) + ABS( AE( 1 ) )
- DO 10 J = 2, N - 1
- ANORM = MAX( ANORM, ABS( AD( J ) )+ABS( AE( J ) )+
- $ ABS( AE( J-1 ) ) )
- 10 CONTINUE
- ANORM = MAX( ANORM, ABS( AD( N ) )+ABS( AE( N-1 ) ) )
- ELSE
- ANORM = ABS( AD( 1 ) )
- END IF
- ANORM = MAX( ANORM, UNFL )
- *
- * Norm of U*AU - S
- *
- DO 40 I = 1, M
- DO 30 J = 1, M
- WORK( I, J ) = CZERO
- DO 20 K = 1, N
- AUKJ = AD( K )*U( K, J )
- IF( K.NE.N )
- $ AUKJ = AUKJ + AE( K )*U( K+1, J )
- IF( K.NE.1 )
- $ AUKJ = AUKJ + AE( K-1 )*U( K-1, J )
- WORK( I, J ) = WORK( I, J ) + U( K, I )*AUKJ
- 20 CONTINUE
- 30 CONTINUE
- WORK( I, I ) = WORK( I, I ) - SD( I )
- IF( KBAND.EQ.1 ) THEN
- IF( I.NE.1 )
- $ WORK( I, I-1 ) = WORK( I, I-1 ) - SE( I-1 )
- IF( I.NE.N )
- $ WORK( I, I+1 ) = WORK( I, I+1 ) - SE( I )
- END IF
- 40 CONTINUE
- *
- WNORM = CLANSY( '1', 'L', M, WORK, M, RWORK )
- *
- IF( ANORM.GT.WNORM ) THEN
- RESULT( 1 ) = ( WNORM / ANORM ) / ( M*ULP )
- ELSE
- IF( ANORM.LT.ONE ) THEN
- RESULT( 1 ) = ( MIN( WNORM, M*ANORM ) / ANORM ) / ( M*ULP )
- ELSE
- RESULT( 1 ) = MIN( WNORM / ANORM, REAL( M ) ) / ( M*ULP )
- END IF
- END IF
- *
- * Do Test 2
- *
- * Compute U*U - I
- *
- CALL CGEMM( 'T', 'N', M, M, N, CONE, U, LDU, U, LDU, CZERO, WORK,
- $ M )
- *
- DO 50 J = 1, M
- WORK( J, J ) = WORK( J, J ) - ONE
- 50 CONTINUE
- *
- RESULT( 2 ) = MIN( REAL( M ), CLANGE( '1', M, M, WORK, M,
- $ RWORK ) ) / ( M*ULP )
- *
- RETURN
- *
- * End of CSTT22
- *
- END
|