|
- *> \brief \b CBDT01
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CBDT01( M, N, KD, A, LDA, Q, LDQ, D, E, PT, LDPT, WORK,
- * RWORK, RESID )
- *
- * .. Scalar Arguments ..
- * INTEGER KD, LDA, LDPT, LDQ, M, N
- * REAL RESID
- * ..
- * .. Array Arguments ..
- * REAL D( * ), E( * ), RWORK( * )
- * COMPLEX A( LDA, * ), PT( LDPT, * ), Q( LDQ, * ),
- * $ WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CBDT01 reconstructs a general matrix A from its bidiagonal form
- *> A = Q * B * P**H
- *> where Q (m by min(m,n)) and P**H (min(m,n) by n) are unitary
- *> matrices and B is bidiagonal.
- *>
- *> The test ratio to test the reduction is
- *> RESID = norm(A - Q * B * P**H) / ( n * norm(A) * EPS )
- *> where EPS is the machine precision.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the matrices A and Q.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the matrices A and P**H.
- *> \endverbatim
- *>
- *> \param[in] KD
- *> \verbatim
- *> KD is INTEGER
- *> If KD = 0, B is diagonal and the array E is not referenced.
- *> If KD = 1, the reduction was performed by xGEBRD; B is upper
- *> bidiagonal if M >= N, and lower bidiagonal if M < N.
- *> If KD = -1, the reduction was performed by xGBBRD; B is
- *> always upper bidiagonal.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is COMPLEX array, dimension (LDA,N)
- *> The m by n matrix A.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,M).
- *> \endverbatim
- *>
- *> \param[in] Q
- *> \verbatim
- *> Q is COMPLEX array, dimension (LDQ,N)
- *> The m by min(m,n) unitary matrix Q in the reduction
- *> A = Q * B * P**H.
- *> \endverbatim
- *>
- *> \param[in] LDQ
- *> \verbatim
- *> LDQ is INTEGER
- *> The leading dimension of the array Q. LDQ >= max(1,M).
- *> \endverbatim
- *>
- *> \param[in] D
- *> \verbatim
- *> D is REAL array, dimension (min(M,N))
- *> The diagonal elements of the bidiagonal matrix B.
- *> \endverbatim
- *>
- *> \param[in] E
- *> \verbatim
- *> E is REAL array, dimension (min(M,N)-1)
- *> The superdiagonal elements of the bidiagonal matrix B if
- *> m >= n, or the subdiagonal elements of B if m < n.
- *> \endverbatim
- *>
- *> \param[in] PT
- *> \verbatim
- *> PT is COMPLEX array, dimension (LDPT,N)
- *> The min(m,n) by n unitary matrix P**H in the reduction
- *> A = Q * B * P**H.
- *> \endverbatim
- *>
- *> \param[in] LDPT
- *> \verbatim
- *> LDPT is INTEGER
- *> The leading dimension of the array PT.
- *> LDPT >= max(1,min(M,N)).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX array, dimension (M+N)
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is REAL array, dimension (M)
- *> \endverbatim
- *>
- *> \param[out] RESID
- *> \verbatim
- *> RESID is REAL
- *> The test ratio:
- *> norm(A - Q * B * P**H) / ( n * norm(A) * EPS )
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complex_eig
- *
- * =====================================================================
- SUBROUTINE CBDT01( M, N, KD, A, LDA, Q, LDQ, D, E, PT, LDPT, WORK,
- $ RWORK, RESID )
- *
- * -- LAPACK test routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER KD, LDA, LDPT, LDQ, M, N
- REAL RESID
- * ..
- * .. Array Arguments ..
- REAL D( * ), E( * ), RWORK( * )
- COMPLEX A( LDA, * ), PT( LDPT, * ), Q( LDQ, * ),
- $ WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ZERO, ONE
- PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
- * ..
- * .. Local Scalars ..
- INTEGER I, J
- REAL ANORM, EPS
- * ..
- * .. External Functions ..
- REAL CLANGE, SCASUM, SLAMCH
- EXTERNAL CLANGE, SCASUM, SLAMCH
- * ..
- * .. External Subroutines ..
- EXTERNAL CCOPY, CGEMV
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC CMPLX, MAX, MIN, REAL
- * ..
- * .. Executable Statements ..
- *
- * Quick return if possible
- *
- IF( M.LE.0 .OR. N.LE.0 ) THEN
- RESID = ZERO
- RETURN
- END IF
- *
- * Compute A - Q * B * P**H one column at a time.
- *
- RESID = ZERO
- IF( KD.NE.0 ) THEN
- *
- * B is bidiagonal.
- *
- IF( KD.NE.0 .AND. M.GE.N ) THEN
- *
- * B is upper bidiagonal and M >= N.
- *
- DO 20 J = 1, N
- CALL CCOPY( M, A( 1, J ), 1, WORK, 1 )
- DO 10 I = 1, N - 1
- WORK( M+I ) = D( I )*PT( I, J ) + E( I )*PT( I+1, J )
- 10 CONTINUE
- WORK( M+N ) = D( N )*PT( N, J )
- CALL CGEMV( 'No transpose', M, N, -CMPLX( ONE ), Q, LDQ,
- $ WORK( M+1 ), 1, CMPLX( ONE ), WORK, 1 )
- RESID = MAX( RESID, SCASUM( M, WORK, 1 ) )
- 20 CONTINUE
- ELSE IF( KD.LT.0 ) THEN
- *
- * B is upper bidiagonal and M < N.
- *
- DO 40 J = 1, N
- CALL CCOPY( M, A( 1, J ), 1, WORK, 1 )
- DO 30 I = 1, M - 1
- WORK( M+I ) = D( I )*PT( I, J ) + E( I )*PT( I+1, J )
- 30 CONTINUE
- WORK( M+M ) = D( M )*PT( M, J )
- CALL CGEMV( 'No transpose', M, M, -CMPLX( ONE ), Q, LDQ,
- $ WORK( M+1 ), 1, CMPLX( ONE ), WORK, 1 )
- RESID = MAX( RESID, SCASUM( M, WORK, 1 ) )
- 40 CONTINUE
- ELSE
- *
- * B is lower bidiagonal.
- *
- DO 60 J = 1, N
- CALL CCOPY( M, A( 1, J ), 1, WORK, 1 )
- WORK( M+1 ) = D( 1 )*PT( 1, J )
- DO 50 I = 2, M
- WORK( M+I ) = E( I-1 )*PT( I-1, J ) +
- $ D( I )*PT( I, J )
- 50 CONTINUE
- CALL CGEMV( 'No transpose', M, M, -CMPLX( ONE ), Q, LDQ,
- $ WORK( M+1 ), 1, CMPLX( ONE ), WORK, 1 )
- RESID = MAX( RESID, SCASUM( M, WORK, 1 ) )
- 60 CONTINUE
- END IF
- ELSE
- *
- * B is diagonal.
- *
- IF( M.GE.N ) THEN
- DO 80 J = 1, N
- CALL CCOPY( M, A( 1, J ), 1, WORK, 1 )
- DO 70 I = 1, N
- WORK( M+I ) = D( I )*PT( I, J )
- 70 CONTINUE
- CALL CGEMV( 'No transpose', M, N, -CMPLX( ONE ), Q, LDQ,
- $ WORK( M+1 ), 1, CMPLX( ONE ), WORK, 1 )
- RESID = MAX( RESID, SCASUM( M, WORK, 1 ) )
- 80 CONTINUE
- ELSE
- DO 100 J = 1, N
- CALL CCOPY( M, A( 1, J ), 1, WORK, 1 )
- DO 90 I = 1, M
- WORK( M+I ) = D( I )*PT( I, J )
- 90 CONTINUE
- CALL CGEMV( 'No transpose', M, M, -CMPLX( ONE ), Q, LDQ,
- $ WORK( M+1 ), 1, CMPLX( ONE ), WORK, 1 )
- RESID = MAX( RESID, SCASUM( M, WORK, 1 ) )
- 100 CONTINUE
- END IF
- END IF
- *
- * Compute norm(A - Q * B * P**H) / ( n * norm(A) * EPS )
- *
- ANORM = CLANGE( '1', M, N, A, LDA, RWORK )
- EPS = SLAMCH( 'Precision' )
- *
- IF( ANORM.LE.ZERO ) THEN
- IF( RESID.NE.ZERO )
- $ RESID = ONE / EPS
- ELSE
- IF( ANORM.GE.RESID ) THEN
- RESID = ( RESID / ANORM ) / ( REAL( N )*EPS )
- ELSE
- IF( ANORM.LT.ONE ) THEN
- RESID = ( MIN( RESID, REAL( N )*ANORM ) / ANORM ) /
- $ ( REAL( N )*EPS )
- ELSE
- RESID = MIN( RESID / ANORM, REAL( N ) ) /
- $ ( REAL( N )*EPS )
- END IF
- END IF
- END IF
- *
- RETURN
- *
- * End of CBDT01
- *
- END
|