|
- /*****************************************************************************
- Copyright (c) 2023, The OpenBLAS Project
- All rights reserved.
-
- Redistribution and use in source and binary forms, with or without
- modification, are permitted provided that the following conditions are
- met:
-
- 1. Redistributions of source code must retain the above copyright
- notice, this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in
- the documentation and/or other materials provided with the
- distribution.
- 3. Neither the name of the OpenBLAS project nor the names of
- its contributors may be used to endorse or promote products
- derived from this software without specific prior written
- permission.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
- SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
- CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
- OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
- USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
- **********************************************************************************/
-
- #include "utest/openblas_utest.h"
- #include "common.h"
-
-
- #define DATASIZE 100
- #define INCREMENT 2
-
- struct DATA_CROT {
- float x_test[DATASIZE * INCREMENT * 2];
- float y_test[DATASIZE * INCREMENT * 2];
- float x_verify[DATASIZE * INCREMENT * 2];
- float y_verify[DATASIZE * INCREMENT * 2];
- };
-
- #ifdef BUILD_COMPLEX
- static struct DATA_CROT data_crot;
-
- /**
- * Fortran API specific function
- * Comapare results computed by csrot and caxpby
- *
- * param n specifies size of vector x
- * param inc_x specifies increment of vector x
- * param inc_y specifies increment of vector y
- * param c specifies cosine
- * param s specifies sine
- * return norm of differences
- */
- static float check_csrot(blasint n, blasint inc_x, blasint inc_y, float *c, float *s)
- {
- blasint i;
- float norm = 0;
- float s_neg[] = {-s[0], s[1]};
-
- blasint inc_x_abs = labs(inc_x);
- blasint inc_y_abs = labs(inc_y);
-
- // Fill vectors x, y
- srand_generate(data_crot.x_test, n * inc_x_abs * 2);
- srand_generate(data_crot.y_test, n * inc_y_abs * 2);
-
- if (inc_x == 0 && inc_y == 0) {
- srand_generate(data_crot.x_test, n * 2);
- srand_generate(data_crot.y_test, n * 2);
- }
-
- // Copy vector x for caxpby
- for (i = 0; i < n * inc_x_abs * 2; i++)
- data_crot.x_verify[i] = data_crot.x_test[i];
-
- // Copy vector y for caxpby
- for (i = 0; i < n * inc_y_abs * 2; i++)
- data_crot.y_verify[i] = data_crot.y_test[i];
-
- // Find cx = c*x + s*y
- BLASFUNC(caxpby)(&n, s, data_crot.y_test, &inc_y, c, data_crot.x_verify, &inc_x);
-
- // Find cy = -conjg(s)*x + c*y
- BLASFUNC(caxpby)(&n, s_neg, data_crot.x_test, &inc_x, c, data_crot.y_verify, &inc_y);
-
- BLASFUNC(csrot)(&n, data_crot.x_test, &inc_x, data_crot.y_test, &inc_y, c, s);
-
- // Find the differences between vector x caculated by caxpby and csrot
- for (i = 0; i < n * 2 * inc_x_abs; i++)
- data_crot.x_test[i] -= data_crot.x_verify[i];
-
- // Find the differences between vector y caculated by caxpby and csrot
- for (i = 0; i < n * 2 * inc_y_abs; i++)
- data_crot.y_test[i] -= data_crot.y_verify[i];
-
- // Find the norm of differences
- norm += BLASFUNC(scnrm2)(&n, data_crot.x_test, &inc_x_abs);
- norm += BLASFUNC(scnrm2)(&n, data_crot.y_test, &inc_y_abs);
- return (norm / 2);
- }
-
- /**
- * C API specific function
- * Comapare results computed by csrot and caxpby
- *
- * param n specifies size of vector x
- * param inc_x specifies increment of vector x
- * param inc_y specifies increment of vector y
- * param c specifies cosine
- * param s specifies sine
- * return norm of differences
- */
- static float c_api_check_csrot(blasint n, blasint inc_x, blasint inc_y, float *c, float *s)
- {
- blasint i;
- float norm = 0;
- float s_neg[] = {-s[0], s[1]};
-
- blasint inc_x_abs = labs(inc_x);
- blasint inc_y_abs = labs(inc_y);
-
- // Fill vectors x, y
- srand_generate(data_crot.x_test, n * inc_x_abs * 2);
- srand_generate(data_crot.y_test, n * inc_y_abs * 2);
-
- if (inc_x == 0 && inc_y == 0) {
- srand_generate(data_crot.x_test, n * 2);
- srand_generate(data_crot.y_test, n * 2);
- }
-
- // Copy vector x for caxpby
- for (i = 0; i < n * inc_x_abs * 2; i++)
- data_crot.x_verify[i] = data_crot.x_test[i];
-
- // Copy vector y for caxpby
- for (i = 0; i < n * inc_y_abs * 2; i++)
- data_crot.y_verify[i] = data_crot.y_test[i];
-
- // Find cx = c*x + s*y
- cblas_caxpby(n, s, data_crot.y_test, inc_y, c, data_crot.x_verify, inc_x);
-
- // Find cy = -conjg(s)*x + c*y
- cblas_caxpby(n, s_neg, data_crot.x_test, inc_x, c, data_crot.y_verify, inc_y);
-
- cblas_csrot(n, data_crot.x_test, inc_x, data_crot.y_test, inc_y, c[0], s[0]);
-
- // Find the differences between vector x caculated by caxpby and csrot
- for (i = 0; i < n * 2 * inc_x_abs; i++)
- data_crot.x_test[i] -= data_crot.x_verify[i];
-
- // Find the differences between vector y caculated by caxpby and csrot
- for (i = 0; i < n * 2 * inc_y_abs; i++)
- data_crot.y_test[i] -= data_crot.y_verify[i];
-
- // Find the norm of differences
- norm += cblas_scnrm2(n, data_crot.x_test, inc_x_abs);
- norm += cblas_scnrm2(n, data_crot.y_test, inc_y_abs);
- return (norm / 2);
- }
-
- /**
- * Fortran API specific test
- * Test crot by comparing it with caxpby.
- * Test with the following options:
- *
- * Size of vectors x, y is 100
- * Stride of vector x is 0
- * Stride of vector y is 0
- * c = 1.0f
- * s = 2.0f
- */
- CTEST(crot, inc_x_0_inc_y_0)
- {
- blasint n = 100;
-
- blasint inc_x = 0;
- blasint inc_y = 0;
-
- // Imaginary part for caxpby
- float c[] = {1.0f, 0.0f};
- float s[] = {2.0f, 0.0f};
-
- float norm = check_csrot(n, inc_x, inc_y, c, s);
- ASSERT_DBL_NEAR_TOL(0.0f, norm, SINGLE_EPS);
- }
-
- /**
- * Fortran API specific test
- * Test crot by comparing it with caxpby.
- * Test with the following options:
- *
- * Size of vectors x, y is 100
- * Stride of vector x is 1
- * Stride of vector y is 1
- * c = 1.0f
- * s = 1.0f
- */
- CTEST(crot, inc_x_1_inc_y_1)
- {
- blasint n = 100;
-
- blasint inc_x = 1;
- blasint inc_y = 1;
-
- // Imaginary part for caxpby
- float c[] = {1.0f, 0.0f};
- float s[] = {1.0f, 0.0f};
-
- float norm = check_csrot(n, inc_x, inc_y, c, s);
- ASSERT_DBL_NEAR_TOL(0.0f, norm, SINGLE_EPS);
- }
-
- /**
- * Fortran API specific test
- * Test crot by comparing it with caxpby.
- * Test with the following options:
- *
- * Size of vectors x, y is 100
- * Stride of vector x is -1
- * Stride of vector y is -1
- * c = 1.0f
- * s = 1.0f
- */
- CTEST(crot, inc_x_neg_1_inc_y_neg_1)
- {
- blasint n = 100;
-
- blasint inc_x = -1;
- blasint inc_y = -1;
-
- // Imaginary part for caxpby
- float c[] = {1.0f, 0.0f};
- float s[] = {1.0f, 0.0f};
-
- float norm = check_csrot(n, inc_x, inc_y, c, s);
- ASSERT_DBL_NEAR_TOL(0.0f, norm, SINGLE_EPS);
- }
-
- /**
- * Fortran API specific test
- * Test crot by comparing it with caxpby.
- * Test with the following options:
- *
- * Size of vectors x, y is 100
- * Stride of vector x is 2
- * Stride of vector y is 1
- * c = 3.0f
- * s = 2.0f
- */
- CTEST(crot, inc_x_2_inc_y_1)
- {
- blasint n = 100;
-
- blasint inc_x = 2;
- blasint inc_y = 1;
-
- // Imaginary part for caxpby
- float c[] = {3.0f, 0.0f};
- float s[] = {2.0f, 0.0f};
-
- float norm = check_csrot(n, inc_x, inc_y, c, s);
- ASSERT_DBL_NEAR_TOL(0.0f, norm, SINGLE_EPS);
- }
-
- /**
- * Fortran API specific test
- * Test crot by comparing it with caxpby.
- * Test with the following options:
- *
- * Size of vectors x, y is 100
- * Stride of vector x is -2
- * Stride of vector y is 1
- * c = 1.0f
- * s = 1.0f
- */
- CTEST(crot, inc_x_neg_2_inc_y_1)
- {
- blasint n = 100;
-
- blasint inc_x = -2;
- blasint inc_y = 1;
-
- // Imaginary part for caxpby
- float c[] = {1.0f, 0.0f};
- float s[] = {1.0f, 0.0f};
-
- float norm = check_csrot(n, inc_x, inc_y, c, s);
- ASSERT_DBL_NEAR_TOL(0.0f, norm, SINGLE_EPS);
- }
-
- /**
- * Fortran API specific test
- * Test crot by comparing it with caxpby.
- * Test with the following options:
- *
- * Size of vectors x, y is 100
- * Stride of vector x is 1
- * Stride of vector y is 2
- * c = 1.0f
- * s = 1.0f
- */
- CTEST(crot, inc_x_1_inc_y_2)
- {
- blasint n = 100;
-
- blasint inc_x = 1;
- blasint inc_y = 2;
-
- // Imaginary part for caxpby
- float c[] = {1.0f, 0.0f};
- float s[] = {1.0f, 0.0f};
-
- float norm = check_csrot(n, inc_x, inc_y, c, s);
- ASSERT_DBL_NEAR_TOL(0.0f, norm, SINGLE_EPS);
- }
-
- /**
- * Fortran API specific test
- * Test crot by comparing it with caxpby.
- * Test with the following options:
- *
- * Size of vectors x, y is 100
- * Stride of vector x is 1
- * Stride of vector y is -2
- * c = 2.0f
- * s = 1.0f
- */
- CTEST(crot, inc_x_1_inc_y_neg_2)
- {
- blasint n = 100;
-
- blasint inc_x = 1;
- blasint inc_y = -2;
-
- // Imaginary part for caxpby
- float c[] = {2.0f, 0.0f};
- float s[] = {1.0f, 0.0f};
-
- float norm = check_csrot(n, inc_x, inc_y, c, s);
- ASSERT_DBL_NEAR_TOL(0.0f, norm, SINGLE_EPS);
- }
-
- /**
- * Fortran API specific test
- * Test crot by comparing it with caxpby.
- * Test with the following options:
- *
- * Size of vectors x, y is 100
- * Stride of vector x is 2
- * Stride of vector y is 2
- * c = 1.0f
- * s = 2.0f
- */
- CTEST(crot, inc_x_2_inc_y_2)
- {
- blasint n = 100;
-
- blasint inc_x = 2;
- blasint inc_y = 2;
-
- // Imaginary part for caxpby
- float c[] = {1.0f, 0.0f};
- float s[] = {2.0f, 0.0f};
-
- float norm = check_csrot(n, inc_x, inc_y, c, s);
- ASSERT_DBL_NEAR_TOL(0.0f, norm, SINGLE_EPS);
- }
-
- /**
- * Fortran API specific test
- * Test crot by comparing it with caxpby.
- * Test with the following options:
- *
- * Size of vectors x, y is 100
- * Stride of vector x is 2
- * Stride of vector y is 2
- * c = 1.0f
- * s = 1.0f
- */
- CTEST(crot, inc_x_neg_2_inc_y_neg_2)
- {
- blasint n = 100;
-
- blasint inc_x = -2;
- blasint inc_y = -2;
-
- // Imaginary part for caxpby
- float c[] = {1.0f, 0.0f};
- float s[] = {1.0f, 0.0f};
-
- float norm = check_csrot(n, inc_x, inc_y, c, s);
- ASSERT_DBL_NEAR_TOL(0.0f, norm, SINGLE_EPS);
- }
-
- /**
- * Fortran API specific test
- * Test crot by comparing it with caxpby.
- * Test with the following options:
- *
- * Size of vectors x, y is 100
- * Stride of vector x is 2
- * Stride of vector y is 2
- * c = 0.0f
- * s = 1.0f
- */
- CTEST(crot, inc_x_2_inc_y_2_c_zero)
- {
- blasint n = 100;
-
- blasint inc_x = 2;
- blasint inc_y = 2;
-
- // Imaginary part for caxpby
- float c[] = {0.0f, 0.0f};
- float s[] = {1.0f, 0.0f};
-
- float norm = check_csrot(n, inc_x, inc_y, c, s);
- ASSERT_DBL_NEAR_TOL(0.0f, norm, SINGLE_EPS);
- }
-
- /**
- * Fortran API specific test
- * Test crot by comparing it with caxpby.
- * Test with the following options:
- *
- * Size of vectors x, y is 100
- * Stride of vector x is 2
- * Stride of vector y is 2
- * c = 1.0f
- * s = 0.0f
- */
- CTEST(crot, inc_x_2_inc_y_2_s_zero)
- {
- blasint n = 100;
-
- blasint inc_x = 2;
- blasint inc_y = 2;
-
- // Imaginary part for caxpby
- float c[] = {1.0f, 0.0f};
- float s[] = {0.0f, 0.0f};
-
- float norm = check_csrot(n, inc_x, inc_y, c, s);
- ASSERT_DBL_NEAR_TOL(0.0f, norm, SINGLE_EPS);
- }
-
- /**
- * Fortran API specific test
- * Test crot by comparing it with caxpby.
- * Test with the following options:
- *
- * Size of vectors x, y is 0
- * Stride of vector x is 1
- * Stride of vector y is 1
- * c = 1.0f
- * s = 1.0f
- */
- CTEST(crot, check_n_zero)
- {
- blasint n = 0;
-
- blasint inc_x = 1;
- blasint inc_y = 1;
-
- // Imaginary part for caxpby
- float c[] = {1.0f, 0.0f};
- float s[] = {1.0f, 0.0f};
-
- float norm = check_csrot(n, inc_x, inc_y, c, s);
- ASSERT_DBL_NEAR_TOL(0.0f, norm, SINGLE_EPS);
- }
-
- /**
- * C API specific test
- * Test crot by comparing it with caxpby.
- * Test with the following options:
- *
- * Size of vectors x, y is 100
- * Stride of vector x is 0
- * Stride of vector y is 0
- * c = 1.0f
- * s = 2.0f
- */
- CTEST(crot, c_api_inc_x_0_inc_y_0)
- {
- blasint n = 100;
-
- blasint inc_x = 0;
- blasint inc_y = 0;
-
- // Imaginary part for caxpby
- float c[] = {3.0f, 0.0f};
- float s[] = {2.0f, 0.0f};
-
- float norm = c_api_check_csrot(n, inc_x, inc_y, c, s);
- ASSERT_DBL_NEAR_TOL(0.0f, norm, SINGLE_EPS);
- }
-
- /**
- * C API specific test
- * Test crot by comparing it with caxpby.
- * Test with the following options:
- *
- * Size of vectors x, y is 100
- * Stride of vector x is 1
- * Stride of vector y is 1
- * c = 1.0f
- * s = 1.0f
- */
- CTEST(crot, c_api_inc_x_1_inc_y_1)
- {
- blasint n = 100;
-
- blasint inc_x = 1;
- blasint inc_y = 1;
-
- // Imaginary part for caxpby
- float c[] = {1.0f, 0.0f};
- float s[] = {1.0f, 0.0f};
-
- float norm = c_api_check_csrot(n, inc_x, inc_y, c, s);
- ASSERT_DBL_NEAR_TOL(0.0f, norm, SINGLE_EPS);
- }
-
- /**
- * C API specific test
- * Test crot by comparing it with caxpby.
- * Test with the following options:
- *
- * Size of vectors x, y is 100
- * Stride of vector x is -1
- * Stride of vector y is -1
- * c = 1.0f
- * s = 1.0f
- */
- CTEST(crot, c_api_inc_x_neg_1_inc_y_neg_1)
- {
- blasint n = 100;
-
- blasint inc_x = -1;
- blasint inc_y = -1;
-
- // Imaginary part for caxpby
- float c[] = {1.0f, 0.0f};
- float s[] = {1.0f, 0.0f};
-
- float norm = c_api_check_csrot(n, inc_x, inc_y, c, s);
- ASSERT_DBL_NEAR_TOL(0.0f, norm, SINGLE_EPS);
- }
-
- /**
- * C API specific test
- * Test crot by comparing it with caxpby.
- * Test with the following options:
- *
- * Size of vectors x, y is 100
- * Stride of vector x is 2
- * Stride of vector y is 1
- * c = 3.0f
- * s = 2.0f
- */
- CTEST(crot, c_api_inc_x_2_inc_y_1)
- {
- blasint n = 100;
-
- blasint inc_x = 2;
- blasint inc_y = 1;
-
- // Imaginary part for caxpby
- float c[] = {3.0f, 0.0f};
- float s[] = {2.0f, 0.0f};
-
- float norm = c_api_check_csrot(n, inc_x, inc_y, c, s);
- ASSERT_DBL_NEAR_TOL(0.0f, norm, SINGLE_EPS);
- }
-
- /**
- * C API specific test
- * Test crot by comparing it with caxpby.
- * Test with the following options:
- *
- * Size of vectors x, y is 100
- * Stride of vector x is -2
- * Stride of vector y is 1
- * c = 1.0f
- * s = 1.0f
- */
- CTEST(crot, c_api_inc_x_neg_2_inc_y_1)
- {
- blasint n = 100;
-
- blasint inc_x = -2;
- blasint inc_y = 1;
-
- // Imaginary part for caxpby
- float c[] = {1.0f, 0.0f};
- float s[] = {1.0f, 0.0f};
-
- float norm = c_api_check_csrot(n, inc_x, inc_y, c, s);
- ASSERT_DBL_NEAR_TOL(0.0f, norm, SINGLE_EPS);
- }
-
- /**
- * C API specific test
- * Test crot by comparing it with caxpby.
- * Test with the following options:
- *
- * Size of vectors x, y is 100
- * Stride of vector x is 1
- * Stride of vector y is 2
- * c = 1.0f
- * s = 1.0f
- */
- CTEST(crot, c_api_inc_x_1_inc_y_2)
- {
- blasint n = 100;
-
- blasint inc_x = 1;
- blasint inc_y = 2;
-
- // Imaginary part for caxpby
- float c[] = {1.0f, 0.0f};
- float s[] = {1.0f, 0.0f};
-
- float norm = c_api_check_csrot(n, inc_x, inc_y, c, s);
- ASSERT_DBL_NEAR_TOL(0.0f, norm, SINGLE_EPS);
- }
-
- /**
- * C API specific test
- * Test crot by comparing it with caxpby.
- * Test with the following options:
- *
- * Size of vectors x, y is 100
- * Stride of vector x is 1
- * Stride of vector y is -2
- * c = 2.0f
- * s = 1.0f
- */
- CTEST(crot, c_api_inc_x_1_inc_y_neg_2)
- {
- blasint n = 100;
-
- blasint inc_x = 1;
- blasint inc_y = -2;
-
- // Imaginary part for caxpby
- float c[] = {2.0f, 0.0f};
- float s[] = {1.0f, 0.0f};
-
- float norm = c_api_check_csrot(n, inc_x, inc_y, c, s);
- ASSERT_DBL_NEAR_TOL(0.0f, norm, SINGLE_EPS);
- }
-
- /**
- * C API specific test
- * Test crot by comparing it with caxpby.
- * Test with the following options:
- *
- * Size of vectors x, y is 100
- * Stride of vector x is 2
- * Stride of vector y is 2
- * c = 1.0f
- * s = 2.0f
- */
- CTEST(crot, c_api_inc_x_2_inc_y_2)
- {
- blasint n = 100;
-
- blasint inc_x = 2;
- blasint inc_y = 2;
-
- // Imaginary part for caxpby
- float c[] = {1.0f, 0.0f};
- float s[] = {2.0f, 0.0f};
-
- float norm = c_api_check_csrot(n, inc_x, inc_y, c, s);
- ASSERT_DBL_NEAR_TOL(0.0f, norm, SINGLE_EPS);
- }
-
- /**
- * C API specific test
- * Test crot by comparing it with caxpby.
- * Test with the following options:
- *
- * Size of vectors x, y is 100
- * Stride of vector x is 2
- * Stride of vector y is 2
- * c = 1.0f
- * s = 1.0f
- */
- CTEST(crot, c_api_inc_x_neg_2_inc_y_neg_2)
- {
- blasint n = 100;
-
- blasint inc_x = -2;
- blasint inc_y = -2;
-
- // Imaginary part for caxpby
- float c[] = {1.0f, 0.0f};
- float s[] = {1.0f, 0.0f};
-
- float norm = c_api_check_csrot(n, inc_x, inc_y, c, s);
- ASSERT_DBL_NEAR_TOL(0.0f, norm, SINGLE_EPS);
- }
-
- /**
- * C API specific test
- * Test crot by comparing it with caxpby.
- * Test with the following options:
- *
- * Size of vectors x, y is 100
- * Stride of vector x is 2
- * Stride of vector y is 2
- * c = 0.0f
- * s = 1.0f
- */
- CTEST(crot, c_api_inc_x_2_inc_y_2_c_zero)
- {
- blasint n = 100;
-
- blasint inc_x = 2;
- blasint inc_y = 2;
-
- // Imaginary part for caxpby
- float c[] = {0.0f, 0.0f};
- float s[] = {1.0f, 0.0f};
-
- float norm = c_api_check_csrot(n, inc_x, inc_y, c, s);
- ASSERT_DBL_NEAR_TOL(0.0f, norm, SINGLE_EPS);
- }
-
- /**
- * C API specific test
- * Test crot by comparing it with caxpby.
- * Test with the following options:
- *
- * Size of vectors x, y is 100
- * Stride of vector x is 2
- * Stride of vector y is 2
- * c = 1.0f
- * s = 0.0f
- */
- CTEST(crot, c_api_inc_x_2_inc_y_2_s_zero)
- {
- blasint n = 100;
-
- blasint inc_x = 2;
- blasint inc_y = 2;
-
- // Imaginary part for caxpby
- float c[] = {1.0f, 0.0f};
- float s[] = {0.0f, 0.0f};
-
- float norm = c_api_check_csrot(n, inc_x, inc_y, c, s);
- ASSERT_DBL_NEAR_TOL(0.0f, norm, SINGLE_EPS);
- }
-
- /**
- * C API specific test
- * Test crot by comparing it with caxpby.
- * Test with the following options:
- *
- * Size of vectors x, y is 0
- * Stride of vector x is 1
- * Stride of vector y is 1
- * c = 1.0f
- * s = 1.0f
- */
- CTEST(crot, c_api_check_n_zero)
- {
- blasint n = 0;
-
- blasint inc_x = 1;
- blasint inc_y = 1;
-
- // Imaginary part for caxpby
- float c[] = {1.0f, 0.0f};
- float s[] = {1.0f, 0.0f};
-
- float norm = c_api_check_csrot(n, inc_x, inc_y, c, s);
- ASSERT_DBL_NEAR_TOL(0.0f, norm, SINGLE_EPS);
- }
- #endif
|