|
- SUBROUTINE SGETRSF( TRANS, N, NRHS, A, LDA, IPIV, B, LDB, INFO )
- *
- * -- LAPACK routine (version 3.0) --
- * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- * Courant Institute, Argonne National Lab, and Rice University
- * March 31, 1993
- *
- * .. Scalar Arguments ..
- CHARACTER TRANS
- INTEGER INFO, LDA, LDB, N, NRHS
- * ..
- * .. Array Arguments ..
- INTEGER IPIV( * )
- REAL A( LDA, * ), B( LDB, * )
- * ..
- *
- * Purpose
- * =======
- *
- * SGETRS solves a system of linear equations
- * A * X = B or A' * X = B
- * with a general N-by-N matrix A using the LU factorization computed
- * by SGETRF.
- *
- * Arguments
- * =========
- *
- * TRANS (input) CHARACTER*1
- * Specifies the form of the system of equations:
- * = 'N': A * X = B (No transpose)
- * = 'T': A'* X = B (Transpose)
- * = 'C': A'* X = B (Conjugate transpose = Transpose)
- *
- * N (input) INTEGER
- * The order of the matrix A. N >= 0.
- *
- * NRHS (input) INTEGER
- * The number of right hand sides, i.e., the number of columns
- * of the matrix B. NRHS >= 0.
- *
- * A (input) REAL array, dimension (LDA,N)
- * The factors L and U from the factorization A = P*L*U
- * as computed by SGETRF.
- *
- * LDA (input) INTEGER
- * The leading dimension of the array A. LDA >= max(1,N).
- *
- * IPIV (input) INTEGER array, dimension (N)
- * The pivot indices from SGETRF; for 1<=i<=N, row i of the
- * matrix was interchanged with row IPIV(i).
- *
- * B (input/output) REAL array, dimension (LDB,NRHS)
- * On entry, the right hand side matrix B.
- * On exit, the solution matrix X.
- *
- * LDB (input) INTEGER
- * The leading dimension of the array B. LDB >= max(1,N).
- *
- * INFO (output) INTEGER
- * = 0: successful exit
- * < 0: if INFO = -i, the i-th argument had an illegal value
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ONE
- PARAMETER ( ONE = 1.0E+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL NOTRAN
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. External Subroutines ..
- EXTERNAL SLASWP, STRSM, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- NOTRAN = LSAME( TRANS, 'N' )
- IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
- $ LSAME( TRANS, 'C' ) ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( NRHS.LT.0 ) THEN
- INFO = -3
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -5
- ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
- INFO = -8
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'SGETRS', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 .OR. NRHS.EQ.0 )
- $ RETURN
- *
- IF( NOTRAN ) THEN
- *
- * Solve A * X = B.
- *
- * Apply row interchanges to the right hand sides.
- *
- CALL SLASWP( NRHS, B, LDB, 1, N, IPIV, 1 )
- *
- * Solve L*X = B, overwriting B with X.
- *
- CALL STRSM( 'Left', 'Lower', 'No transpose', 'Unit', N, NRHS,
- $ ONE, A, LDA, B, LDB )
- *
- * Solve U*X = B, overwriting B with X.
- *
- CALL STRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', N,
- $ NRHS, ONE, A, LDA, B, LDB )
- ELSE
- *
- * Solve A' * X = B.
- *
- * Solve U'*X = B, overwriting B with X.
- *
- CALL STRSM( 'Left', 'Upper', 'Transpose', 'Non-unit', N, NRHS,
- $ ONE, A, LDA, B, LDB )
- *
- * Solve L'*X = B, overwriting B with X.
- *
- CALL STRSM( 'Left', 'Lower', 'Transpose', 'Unit', N, NRHS, ONE,
- $ A, LDA, B, LDB )
- *
- * Apply row interchanges to the solution vectors.
- *
- CALL SLASWP( NRHS, B, LDB, 1, N, IPIV, -1 )
- END IF
- *
- RETURN
- *
- * End of SGETRS
- *
- END
|