|
- *> \brief \b ZUNBDB6
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download ZUNBDB6 + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zunbdb6.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zunbdb6.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zunbdb6.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZUNBDB6( M1, M2, N, X1, INCX1, X2, INCX2, Q1, LDQ1, Q2,
- * LDQ2, WORK, LWORK, INFO )
- *
- * .. Scalar Arguments ..
- * INTEGER INCX1, INCX2, INFO, LDQ1, LDQ2, LWORK, M1, M2,
- * $ N
- * ..
- * .. Array Arguments ..
- * COMPLEX*16 Q1(LDQ1,*), Q2(LDQ2,*), WORK(*), X1(*), X2(*)
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *>\verbatim
- *>
- *> ZUNBDB6 orthogonalizes the column vector
- *> X = [ X1 ]
- *> [ X2 ]
- *> with respect to the columns of
- *> Q = [ Q1 ] .
- *> [ Q2 ]
- *> The columns of Q must be orthonormal.
- *>
- *> If the projection is zero according to Kahan's "twice is enough"
- *> criterion, then the zero vector is returned.
- *>
- *>\endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] M1
- *> \verbatim
- *> M1 is INTEGER
- *> The dimension of X1 and the number of rows in Q1. 0 <= M1.
- *> \endverbatim
- *>
- *> \param[in] M2
- *> \verbatim
- *> M2 is INTEGER
- *> The dimension of X2 and the number of rows in Q2. 0 <= M2.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns in Q1 and Q2. 0 <= N.
- *> \endverbatim
- *>
- *> \param[in,out] X1
- *> \verbatim
- *> X1 is COMPLEX*16 array, dimension (M1)
- *> On entry, the top part of the vector to be orthogonalized.
- *> On exit, the top part of the projected vector.
- *> \endverbatim
- *>
- *> \param[in] INCX1
- *> \verbatim
- *> INCX1 is INTEGER
- *> Increment for entries of X1.
- *> \endverbatim
- *>
- *> \param[in,out] X2
- *> \verbatim
- *> X2 is COMPLEX*16 array, dimension (M2)
- *> On entry, the bottom part of the vector to be
- *> orthogonalized. On exit, the bottom part of the projected
- *> vector.
- *> \endverbatim
- *>
- *> \param[in] INCX2
- *> \verbatim
- *> INCX2 is INTEGER
- *> Increment for entries of X2.
- *> \endverbatim
- *>
- *> \param[in] Q1
- *> \verbatim
- *> Q1 is COMPLEX*16 array, dimension (LDQ1, N)
- *> The top part of the orthonormal basis matrix.
- *> \endverbatim
- *>
- *> \param[in] LDQ1
- *> \verbatim
- *> LDQ1 is INTEGER
- *> The leading dimension of Q1. LDQ1 >= M1.
- *> \endverbatim
- *>
- *> \param[in] Q2
- *> \verbatim
- *> Q2 is COMPLEX*16 array, dimension (LDQ2, N)
- *> The bottom part of the orthonormal basis matrix.
- *> \endverbatim
- *>
- *> \param[in] LDQ2
- *> \verbatim
- *> LDQ2 is INTEGER
- *> The leading dimension of Q2. LDQ2 >= M2.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX*16 array, dimension (LWORK)
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The dimension of the array WORK. LWORK >= N.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit.
- *> < 0: if INFO = -i, the i-th argument had an illegal value.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date July 2012
- *
- *> \ingroup complex16OTHERcomputational
- *
- * =====================================================================
- SUBROUTINE ZUNBDB6( M1, M2, N, X1, INCX1, X2, INCX2, Q1, LDQ1, Q2,
- $ LDQ2, WORK, LWORK, INFO )
- *
- * -- LAPACK computational routine (version 3.7.1) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * July 2012
- *
- * .. Scalar Arguments ..
- INTEGER INCX1, INCX2, INFO, LDQ1, LDQ2, LWORK, M1, M2,
- $ N
- * ..
- * .. Array Arguments ..
- COMPLEX*16 Q1(LDQ1,*), Q2(LDQ2,*), WORK(*), X1(*), X2(*)
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ALPHASQ, REALONE, REALZERO
- PARAMETER ( ALPHASQ = 0.01D0, REALONE = 1.0D0,
- $ REALZERO = 0.0D0 )
- COMPLEX*16 NEGONE, ONE, ZERO
- PARAMETER ( NEGONE = (-1.0D0,0.0D0), ONE = (1.0D0,0.0D0),
- $ ZERO = (0.0D0,0.0D0) )
- * ..
- * .. Local Scalars ..
- INTEGER I
- DOUBLE PRECISION NORMSQ1, NORMSQ2, SCL1, SCL2, SSQ1, SSQ2
- * ..
- * .. External Subroutines ..
- EXTERNAL ZGEMV, ZLASSQ, XERBLA
- * ..
- * .. Intrinsic Function ..
- INTRINSIC MAX
- * ..
- * .. Executable Statements ..
- *
- * Test input arguments
- *
- INFO = 0
- IF( M1 .LT. 0 ) THEN
- INFO = -1
- ELSE IF( M2 .LT. 0 ) THEN
- INFO = -2
- ELSE IF( N .LT. 0 ) THEN
- INFO = -3
- ELSE IF( INCX1 .LT. 1 ) THEN
- INFO = -5
- ELSE IF( INCX2 .LT. 1 ) THEN
- INFO = -7
- ELSE IF( LDQ1 .LT. MAX( 1, M1 ) ) THEN
- INFO = -9
- ELSE IF( LDQ2 .LT. MAX( 1, M2 ) ) THEN
- INFO = -11
- ELSE IF( LWORK .LT. N ) THEN
- INFO = -13
- END IF
- *
- IF( INFO .NE. 0 ) THEN
- CALL XERBLA( 'ZUNBDB6', -INFO )
- RETURN
- END IF
- *
- * First, project X onto the orthogonal complement of Q's column
- * space
- *
- SCL1 = REALZERO
- SSQ1 = REALONE
- CALL ZLASSQ( M1, X1, INCX1, SCL1, SSQ1 )
- SCL2 = REALZERO
- SSQ2 = REALONE
- CALL ZLASSQ( M2, X2, INCX2, SCL2, SSQ2 )
- NORMSQ1 = SCL1**2*SSQ1 + SCL2**2*SSQ2
- *
- IF( M1 .EQ. 0 ) THEN
- DO I = 1, N
- WORK(I) = ZERO
- END DO
- ELSE
- CALL ZGEMV( 'C', M1, N, ONE, Q1, LDQ1, X1, INCX1, ZERO, WORK,
- $ 1 )
- END IF
- *
- CALL ZGEMV( 'C', M2, N, ONE, Q2, LDQ2, X2, INCX2, ONE, WORK, 1 )
- *
- CALL ZGEMV( 'N', M1, N, NEGONE, Q1, LDQ1, WORK, 1, ONE, X1,
- $ INCX1 )
- CALL ZGEMV( 'N', M2, N, NEGONE, Q2, LDQ2, WORK, 1, ONE, X2,
- $ INCX2 )
- *
- SCL1 = REALZERO
- SSQ1 = REALONE
- CALL ZLASSQ( M1, X1, INCX1, SCL1, SSQ1 )
- SCL2 = REALZERO
- SSQ2 = REALONE
- CALL ZLASSQ( M2, X2, INCX2, SCL2, SSQ2 )
- NORMSQ2 = SCL1**2*SSQ1 + SCL2**2*SSQ2
- *
- * If projection is sufficiently large in norm, then stop.
- * If projection is zero, then stop.
- * Otherwise, project again.
- *
- IF( NORMSQ2 .GE. ALPHASQ*NORMSQ1 ) THEN
- RETURN
- END IF
- *
- IF( NORMSQ2 .EQ. ZERO ) THEN
- RETURN
- END IF
- *
- NORMSQ1 = NORMSQ2
- *
- DO I = 1, N
- WORK(I) = ZERO
- END DO
- *
- IF( M1 .EQ. 0 ) THEN
- DO I = 1, N
- WORK(I) = ZERO
- END DO
- ELSE
- CALL ZGEMV( 'C', M1, N, ONE, Q1, LDQ1, X1, INCX1, ZERO, WORK,
- $ 1 )
- END IF
- *
- CALL ZGEMV( 'C', M2, N, ONE, Q2, LDQ2, X2, INCX2, ONE, WORK, 1 )
- *
- CALL ZGEMV( 'N', M1, N, NEGONE, Q1, LDQ1, WORK, 1, ONE, X1,
- $ INCX1 )
- CALL ZGEMV( 'N', M2, N, NEGONE, Q2, LDQ2, WORK, 1, ONE, X2,
- $ INCX2 )
- *
- SCL1 = REALZERO
- SSQ1 = REALONE
- CALL ZLASSQ( M1, X1, INCX1, SCL1, SSQ1 )
- SCL2 = REALZERO
- SSQ2 = REALONE
- CALL ZLASSQ( M1, X1, INCX1, SCL1, SSQ1 )
- NORMSQ2 = SCL1**2*SSQ1 + SCL2**2*SSQ2
- *
- * If second projection is sufficiently large in norm, then do
- * nothing more. Alternatively, if it shrunk significantly, then
- * truncate it to zero.
- *
- IF( NORMSQ2 .LT. ALPHASQ*NORMSQ1 ) THEN
- DO I = 1, M1
- X1(I) = ZERO
- END DO
- DO I = 1, M2
- X2(I) = ZERO
- END DO
- END IF
- *
- RETURN
- *
- * End of ZUNBDB6
- *
- END
|