|
- *> \brief <b> ZGEEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices</b>
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download ZGEEV + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgeev.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgeev.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgeev.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZGEEV( JOBVL, JOBVR, N, A, LDA, W, VL, LDVL, VR, LDVR,
- * WORK, LWORK, RWORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER JOBVL, JOBVR
- * INTEGER INFO, LDA, LDVL, LDVR, LWORK, N
- * ..
- * .. Array Arguments ..
- * DOUBLE PRECISION RWORK( * )
- * COMPLEX*16 A( LDA, * ), VL( LDVL, * ), VR( LDVR, * ),
- * $ W( * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZGEEV computes for an N-by-N complex nonsymmetric matrix A, the
- *> eigenvalues and, optionally, the left and/or right eigenvectors.
- *>
- *> The right eigenvector v(j) of A satisfies
- *> A * v(j) = lambda(j) * v(j)
- *> where lambda(j) is its eigenvalue.
- *> The left eigenvector u(j) of A satisfies
- *> u(j)**H * A = lambda(j) * u(j)**H
- *> where u(j)**H denotes the conjugate transpose of u(j).
- *>
- *> The computed eigenvectors are normalized to have Euclidean norm
- *> equal to 1 and largest component real.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] JOBVL
- *> \verbatim
- *> JOBVL is CHARACTER*1
- *> = 'N': left eigenvectors of A are not computed;
- *> = 'V': left eigenvectors of are computed.
- *> \endverbatim
- *>
- *> \param[in] JOBVR
- *> \verbatim
- *> JOBVR is CHARACTER*1
- *> = 'N': right eigenvectors of A are not computed;
- *> = 'V': right eigenvectors of A are computed.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is COMPLEX*16 array, dimension (LDA,N)
- *> On entry, the N-by-N matrix A.
- *> On exit, A has been overwritten.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] W
- *> \verbatim
- *> W is COMPLEX*16 array, dimension (N)
- *> W contains the computed eigenvalues.
- *> \endverbatim
- *>
- *> \param[out] VL
- *> \verbatim
- *> VL is COMPLEX*16 array, dimension (LDVL,N)
- *> If JOBVL = 'V', the left eigenvectors u(j) are stored one
- *> after another in the columns of VL, in the same order
- *> as their eigenvalues.
- *> If JOBVL = 'N', VL is not referenced.
- *> u(j) = VL(:,j), the j-th column of VL.
- *> \endverbatim
- *>
- *> \param[in] LDVL
- *> \verbatim
- *> LDVL is INTEGER
- *> The leading dimension of the array VL. LDVL >= 1; if
- *> JOBVL = 'V', LDVL >= N.
- *> \endverbatim
- *>
- *> \param[out] VR
- *> \verbatim
- *> VR is COMPLEX*16 array, dimension (LDVR,N)
- *> If JOBVR = 'V', the right eigenvectors v(j) are stored one
- *> after another in the columns of VR, in the same order
- *> as their eigenvalues.
- *> If JOBVR = 'N', VR is not referenced.
- *> v(j) = VR(:,j), the j-th column of VR.
- *> \endverbatim
- *>
- *> \param[in] LDVR
- *> \verbatim
- *> LDVR is INTEGER
- *> The leading dimension of the array VR. LDVR >= 1; if
- *> JOBVR = 'V', LDVR >= N.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
- *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The dimension of the array WORK. LWORK >= max(1,2*N).
- *> For good performance, LWORK must generally be larger.
- *>
- *> If LWORK = -1, then a workspace query is assumed; the routine
- *> only calculates the optimal size of the WORK array, returns
- *> this value as the first entry of the WORK array, and no error
- *> message related to LWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is DOUBLE PRECISION array, dimension (2*N)
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value.
- *> > 0: if INFO = i, the QR algorithm failed to compute all the
- *> eigenvalues, and no eigenvectors have been computed;
- *> elements i+1:N of W contain eigenvalues which have
- *> converged.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *
- * @precisions fortran z -> c
- *
- *> \ingroup complex16GEeigen
- *
- * =====================================================================
- SUBROUTINE ZGEEV( JOBVL, JOBVR, N, A, LDA, W, VL, LDVL, VR, LDVR,
- $ WORK, LWORK, RWORK, INFO )
- implicit none
- *
- * -- LAPACK driver routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER JOBVL, JOBVR
- INTEGER INFO, LDA, LDVL, LDVR, LWORK, N
- * ..
- * .. Array Arguments ..
- DOUBLE PRECISION RWORK( * )
- COMPLEX*16 A( LDA, * ), VL( LDVL, * ), VR( LDVR, * ),
- $ W( * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ZERO, ONE
- PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
- * ..
- * .. Local Scalars ..
- LOGICAL LQUERY, SCALEA, WANTVL, WANTVR
- CHARACTER SIDE
- INTEGER HSWORK, I, IBAL, IERR, IHI, ILO, IRWORK, ITAU,
- $ IWRK, K, LWORK_TREVC, MAXWRK, MINWRK, NOUT
- DOUBLE PRECISION ANRM, BIGNUM, CSCALE, EPS, SCL, SMLNUM
- COMPLEX*16 TMP
- * ..
- * .. Local Arrays ..
- LOGICAL SELECT( 1 )
- DOUBLE PRECISION DUM( 1 )
- * ..
- * .. External Subroutines ..
- EXTERNAL DLABAD, XERBLA, ZDSCAL, ZGEBAK, ZGEBAL, ZGEHRD,
- $ ZHSEQR, ZLACPY, ZLASCL, ZSCAL, ZTREVC3, ZUNGHR
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- INTEGER IDAMAX, ILAENV
- DOUBLE PRECISION DLAMCH, DZNRM2, ZLANGE
- EXTERNAL LSAME, IDAMAX, ILAENV, DLAMCH, DZNRM2, ZLANGE
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC DBLE, DCMPLX, CONJG, AIMAG, MAX, SQRT
- * ..
- * .. Executable Statements ..
- *
- * Test the input arguments
- *
- INFO = 0
- LQUERY = ( LWORK.EQ.-1 )
- WANTVL = LSAME( JOBVL, 'V' )
- WANTVR = LSAME( JOBVR, 'V' )
- IF( ( .NOT.WANTVL ) .AND. ( .NOT.LSAME( JOBVL, 'N' ) ) ) THEN
- INFO = -1
- ELSE IF( ( .NOT.WANTVR ) .AND. ( .NOT.LSAME( JOBVR, 'N' ) ) ) THEN
- INFO = -2
- ELSE IF( N.LT.0 ) THEN
- INFO = -3
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -5
- ELSE IF( LDVL.LT.1 .OR. ( WANTVL .AND. LDVL.LT.N ) ) THEN
- INFO = -8
- ELSE IF( LDVR.LT.1 .OR. ( WANTVR .AND. LDVR.LT.N ) ) THEN
- INFO = -10
- END IF
- *
- * Compute workspace
- * (Note: Comments in the code beginning "Workspace:" describe the
- * minimal amount of workspace needed at that point in the code,
- * as well as the preferred amount for good performance.
- * CWorkspace refers to complex workspace, and RWorkspace to real
- * workspace. NB refers to the optimal block size for the
- * immediately following subroutine, as returned by ILAENV.
- * HSWORK refers to the workspace preferred by ZHSEQR, as
- * calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
- * the worst case.)
- *
- IF( INFO.EQ.0 ) THEN
- IF( N.EQ.0 ) THEN
- MINWRK = 1
- MAXWRK = 1
- ELSE
- MAXWRK = N + N*ILAENV( 1, 'ZGEHRD', ' ', N, 1, N, 0 )
- MINWRK = 2*N
- IF( WANTVL ) THEN
- MAXWRK = MAX( MAXWRK, N + ( N - 1 )*ILAENV( 1, 'ZUNGHR',
- $ ' ', N, 1, N, -1 ) )
- CALL ZTREVC3( 'L', 'B', SELECT, N, A, LDA,
- $ VL, LDVL, VR, LDVR,
- $ N, NOUT, WORK, -1, RWORK, -1, IERR )
- LWORK_TREVC = INT( WORK(1) )
- MAXWRK = MAX( MAXWRK, N + LWORK_TREVC )
- CALL ZHSEQR( 'S', 'V', N, 1, N, A, LDA, W, VL, LDVL,
- $ WORK, -1, INFO )
- ELSE IF( WANTVR ) THEN
- MAXWRK = MAX( MAXWRK, N + ( N - 1 )*ILAENV( 1, 'ZUNGHR',
- $ ' ', N, 1, N, -1 ) )
- CALL ZTREVC3( 'R', 'B', SELECT, N, A, LDA,
- $ VL, LDVL, VR, LDVR,
- $ N, NOUT, WORK, -1, RWORK, -1, IERR )
- LWORK_TREVC = INT( WORK(1) )
- MAXWRK = MAX( MAXWRK, N + LWORK_TREVC )
- CALL ZHSEQR( 'S', 'V', N, 1, N, A, LDA, W, VR, LDVR,
- $ WORK, -1, INFO )
- ELSE
- CALL ZHSEQR( 'E', 'N', N, 1, N, A, LDA, W, VR, LDVR,
- $ WORK, -1, INFO )
- END IF
- HSWORK = INT( WORK(1) )
- MAXWRK = MAX( MAXWRK, HSWORK, MINWRK )
- END IF
- WORK( 1 ) = MAXWRK
- *
- IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
- INFO = -12
- END IF
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'ZGEEV ', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 )
- $ RETURN
- *
- * Get machine constants
- *
- EPS = DLAMCH( 'P' )
- SMLNUM = DLAMCH( 'S' )
- BIGNUM = ONE / SMLNUM
- CALL DLABAD( SMLNUM, BIGNUM )
- SMLNUM = SQRT( SMLNUM ) / EPS
- BIGNUM = ONE / SMLNUM
- *
- * Scale A if max element outside range [SMLNUM,BIGNUM]
- *
- ANRM = ZLANGE( 'M', N, N, A, LDA, DUM )
- SCALEA = .FALSE.
- IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
- SCALEA = .TRUE.
- CSCALE = SMLNUM
- ELSE IF( ANRM.GT.BIGNUM ) THEN
- SCALEA = .TRUE.
- CSCALE = BIGNUM
- END IF
- IF( SCALEA )
- $ CALL ZLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR )
- *
- * Balance the matrix
- * (CWorkspace: none)
- * (RWorkspace: need N)
- *
- IBAL = 1
- CALL ZGEBAL( 'B', N, A, LDA, ILO, IHI, RWORK( IBAL ), IERR )
- *
- * Reduce to upper Hessenberg form
- * (CWorkspace: need 2*N, prefer N+N*NB)
- * (RWorkspace: none)
- *
- ITAU = 1
- IWRK = ITAU + N
- CALL ZGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
- $ LWORK-IWRK+1, IERR )
- *
- IF( WANTVL ) THEN
- *
- * Want left eigenvectors
- * Copy Householder vectors to VL
- *
- SIDE = 'L'
- CALL ZLACPY( 'L', N, N, A, LDA, VL, LDVL )
- *
- * Generate unitary matrix in VL
- * (CWorkspace: need 2*N-1, prefer N+(N-1)*NB)
- * (RWorkspace: none)
- *
- CALL ZUNGHR( N, ILO, IHI, VL, LDVL, WORK( ITAU ), WORK( IWRK ),
- $ LWORK-IWRK+1, IERR )
- *
- * Perform QR iteration, accumulating Schur vectors in VL
- * (CWorkspace: need 1, prefer HSWORK (see comments) )
- * (RWorkspace: none)
- *
- IWRK = ITAU
- CALL ZHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, W, VL, LDVL,
- $ WORK( IWRK ), LWORK-IWRK+1, INFO )
- *
- IF( WANTVR ) THEN
- *
- * Want left and right eigenvectors
- * Copy Schur vectors to VR
- *
- SIDE = 'B'
- CALL ZLACPY( 'F', N, N, VL, LDVL, VR, LDVR )
- END IF
- *
- ELSE IF( WANTVR ) THEN
- *
- * Want right eigenvectors
- * Copy Householder vectors to VR
- *
- SIDE = 'R'
- CALL ZLACPY( 'L', N, N, A, LDA, VR, LDVR )
- *
- * Generate unitary matrix in VR
- * (CWorkspace: need 2*N-1, prefer N+(N-1)*NB)
- * (RWorkspace: none)
- *
- CALL ZUNGHR( N, ILO, IHI, VR, LDVR, WORK( ITAU ), WORK( IWRK ),
- $ LWORK-IWRK+1, IERR )
- *
- * Perform QR iteration, accumulating Schur vectors in VR
- * (CWorkspace: need 1, prefer HSWORK (see comments) )
- * (RWorkspace: none)
- *
- IWRK = ITAU
- CALL ZHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, W, VR, LDVR,
- $ WORK( IWRK ), LWORK-IWRK+1, INFO )
- *
- ELSE
- *
- * Compute eigenvalues only
- * (CWorkspace: need 1, prefer HSWORK (see comments) )
- * (RWorkspace: none)
- *
- IWRK = ITAU
- CALL ZHSEQR( 'E', 'N', N, ILO, IHI, A, LDA, W, VR, LDVR,
- $ WORK( IWRK ), LWORK-IWRK+1, INFO )
- END IF
- *
- * If INFO .NE. 0 from ZHSEQR, then quit
- *
- IF( INFO.NE.0 )
- $ GO TO 50
- *
- IF( WANTVL .OR. WANTVR ) THEN
- *
- * Compute left and/or right eigenvectors
- * (CWorkspace: need 2*N, prefer N + 2*N*NB)
- * (RWorkspace: need 2*N)
- *
- IRWORK = IBAL + N
- CALL ZTREVC3( SIDE, 'B', SELECT, N, A, LDA, VL, LDVL, VR, LDVR,
- $ N, NOUT, WORK( IWRK ), LWORK-IWRK+1,
- $ RWORK( IRWORK ), N, IERR )
- END IF
- *
- IF( WANTVL ) THEN
- *
- * Undo balancing of left eigenvectors
- * (CWorkspace: none)
- * (RWorkspace: need N)
- *
- CALL ZGEBAK( 'B', 'L', N, ILO, IHI, RWORK( IBAL ), N, VL, LDVL,
- $ IERR )
- *
- * Normalize left eigenvectors and make largest component real
- *
- DO 20 I = 1, N
- SCL = ONE / DZNRM2( N, VL( 1, I ), 1 )
- CALL ZDSCAL( N, SCL, VL( 1, I ), 1 )
- DO 10 K = 1, N
- RWORK( IRWORK+K-1 ) = DBLE( VL( K, I ) )**2 +
- $ AIMAG( VL( K, I ) )**2
- 10 CONTINUE
- K = IDAMAX( N, RWORK( IRWORK ), 1 )
- TMP = CONJG( VL( K, I ) ) / SQRT( RWORK( IRWORK+K-1 ) )
- CALL ZSCAL( N, TMP, VL( 1, I ), 1 )
- VL( K, I ) = DCMPLX( DBLE( VL( K, I ) ), ZERO )
- 20 CONTINUE
- END IF
- *
- IF( WANTVR ) THEN
- *
- * Undo balancing of right eigenvectors
- * (CWorkspace: none)
- * (RWorkspace: need N)
- *
- CALL ZGEBAK( 'B', 'R', N, ILO, IHI, RWORK( IBAL ), N, VR, LDVR,
- $ IERR )
- *
- * Normalize right eigenvectors and make largest component real
- *
- DO 40 I = 1, N
- SCL = ONE / DZNRM2( N, VR( 1, I ), 1 )
- CALL ZDSCAL( N, SCL, VR( 1, I ), 1 )
- DO 30 K = 1, N
- RWORK( IRWORK+K-1 ) = DBLE( VR( K, I ) )**2 +
- $ AIMAG( VR( K, I ) )**2
- 30 CONTINUE
- K = IDAMAX( N, RWORK( IRWORK ), 1 )
- TMP = CONJG( VR( K, I ) ) / SQRT( RWORK( IRWORK+K-1 ) )
- CALL ZSCAL( N, TMP, VR( 1, I ), 1 )
- VR( K, I ) = DCMPLX( DBLE( VR( K, I ) ), ZERO )
- 40 CONTINUE
- END IF
- *
- * Undo scaling if necessary
- *
- 50 CONTINUE
- IF( SCALEA ) THEN
- CALL ZLASCL( 'G', 0, 0, CSCALE, ANRM, N-INFO, 1, W( INFO+1 ),
- $ MAX( N-INFO, 1 ), IERR )
- IF( INFO.GT.0 ) THEN
- CALL ZLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, W, N, IERR )
- END IF
- END IF
- *
- WORK( 1 ) = MAXWRK
- RETURN
- *
- * End of ZGEEV
- *
- END
|