|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef int logical;
- typedef short int shortlogical;
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle_() continue;
- #define myceiling_(w) {ceil(w)}
- #define myhuge_(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc_(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
- #define F2C_proc_par_types 1
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
-
- /* Table of constant values */
-
- static doublecomplex c_b1 = {0.,0.};
- static integer c__1 = 1;
- static integer c__5 = 5;
- static logical c_true = TRUE_;
- static logical c_false = FALSE_;
-
- /* > \brief \b ZLATMT */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE ZLATMT( M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, */
- /* RANK, KL, KU, PACK, A, LDA, WORK, INFO ) */
-
- /* DOUBLE PRECISION COND, DMAX */
- /* INTEGER INFO, KL, KU, LDA, M, MODE, N, RANK */
- /* CHARACTER DIST, PACK, SYM */
- /* COMPLEX*16 A( LDA, * ), WORK( * ) */
- /* DOUBLE PRECISION D( * ) */
- /* INTEGER ISEED( 4 ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > ZLATMT generates random matrices with specified singular values */
- /* > (or hermitian with specified eigenvalues) */
- /* > for testing LAPACK programs. */
- /* > */
- /* > ZLATMT operates by applying the following sequence of */
- /* > operations: */
- /* > */
- /* > Set the diagonal to D, where D may be input or */
- /* > computed according to MODE, COND, DMAX, and SYM */
- /* > as described below. */
- /* > */
- /* > Generate a matrix with the appropriate band structure, by one */
- /* > of two methods: */
- /* > */
- /* > Method A: */
- /* > Generate a dense M x N matrix by multiplying D on the left */
- /* > and the right by random unitary matrices, then: */
- /* > */
- /* > Reduce the bandwidth according to KL and KU, using */
- /* > Householder transformations. */
- /* > */
- /* > Method B: */
- /* > Convert the bandwidth-0 (i.e., diagonal) matrix to a */
- /* > bandwidth-1 matrix using Givens rotations, "chasing" */
- /* > out-of-band elements back, much as in QR; then convert */
- /* > the bandwidth-1 to a bandwidth-2 matrix, etc. Note */
- /* > that for reasonably small bandwidths (relative to M and */
- /* > N) this requires less storage, as a dense matrix is not */
- /* > generated. Also, for hermitian or symmetric matrices, */
- /* > only one triangle is generated. */
- /* > */
- /* > Method A is chosen if the bandwidth is a large fraction of the */
- /* > order of the matrix, and LDA is at least M (so a dense */
- /* > matrix can be stored.) Method B is chosen if the bandwidth */
- /* > is small (< 1/2 N for hermitian or symmetric, < .3 N+M for */
- /* > non-symmetric), or LDA is less than M and not less than the */
- /* > bandwidth. */
- /* > */
- /* > Pack the matrix if desired. Options specified by PACK are: */
- /* > no packing */
- /* > zero out upper half (if hermitian) */
- /* > zero out lower half (if hermitian) */
- /* > store the upper half columnwise (if hermitian or upper */
- /* > triangular) */
- /* > store the lower half columnwise (if hermitian or lower */
- /* > triangular) */
- /* > store the lower triangle in banded format (if hermitian or */
- /* > lower triangular) */
- /* > store the upper triangle in banded format (if hermitian or */
- /* > upper triangular) */
- /* > store the entire matrix in banded format */
- /* > If Method B is chosen, and band format is specified, then the */
- /* > matrix will be generated in the band format, so no repacking */
- /* > will be necessary. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] M */
- /* > \verbatim */
- /* > M is INTEGER */
- /* > The number of rows of A. Not modified. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The number of columns of A. N must equal M if the matrix */
- /* > is symmetric or hermitian (i.e., if SYM is not 'N') */
- /* > Not modified. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] DIST */
- /* > \verbatim */
- /* > DIST is CHARACTER*1 */
- /* > On entry, DIST specifies the type of distribution to be used */
- /* > to generate the random eigen-/singular values. */
- /* > 'U' => UNIFORM( 0, 1 ) ( 'U' for uniform ) */
- /* > 'S' => UNIFORM( -1, 1 ) ( 'S' for symmetric ) */
- /* > 'N' => NORMAL( 0, 1 ) ( 'N' for normal ) */
- /* > Not modified. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] ISEED */
- /* > \verbatim */
- /* > ISEED is INTEGER array, dimension ( 4 ) */
- /* > On entry ISEED specifies the seed of the random number */
- /* > generator. They should lie between 0 and 4095 inclusive, */
- /* > and ISEED(4) should be odd. The random number generator */
- /* > uses a linear congruential sequence limited to small */
- /* > integers, and so should produce machine independent */
- /* > random numbers. The values of ISEED are changed on */
- /* > exit, and can be used in the next call to ZLATMT */
- /* > to continue the same random number sequence. */
- /* > Changed on exit. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] SYM */
- /* > \verbatim */
- /* > SYM is CHARACTER*1 */
- /* > If SYM='H', the generated matrix is hermitian, with */
- /* > eigenvalues specified by D, COND, MODE, and DMAX; they */
- /* > may be positive, negative, or zero. */
- /* > If SYM='P', the generated matrix is hermitian, with */
- /* > eigenvalues (= singular values) specified by D, COND, */
- /* > MODE, and DMAX; they will not be negative. */
- /* > If SYM='N', the generated matrix is nonsymmetric, with */
- /* > singular values specified by D, COND, MODE, and DMAX; */
- /* > they will not be negative. */
- /* > If SYM='S', the generated matrix is (complex) symmetric, */
- /* > with singular values specified by D, COND, MODE, and */
- /* > DMAX; they will not be negative. */
- /* > Not modified. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] D */
- /* > \verbatim */
- /* > D is DOUBLE PRECISION array, dimension ( MIN( M, N ) ) */
- /* > This array is used to specify the singular values or */
- /* > eigenvalues of A (see SYM, above.) If MODE=0, then D is */
- /* > assumed to contain the singular/eigenvalues, otherwise */
- /* > they will be computed according to MODE, COND, and DMAX, */
- /* > and placed in D. */
- /* > Modified if MODE is nonzero. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] MODE */
- /* > \verbatim */
- /* > MODE is INTEGER */
- /* > On entry this describes how the singular/eigenvalues are to */
- /* > be specified: */
- /* > MODE = 0 means use D as input */
- /* > MODE = 1 sets D(1)=1 and D(2:RANK)=1.0/COND */
- /* > MODE = 2 sets D(1:RANK-1)=1 and D(RANK)=1.0/COND */
- /* > MODE = 3 sets D(I)=COND**(-(I-1)/(RANK-1)) */
- /* > MODE = 4 sets D(i)=1 - (i-1)/(N-1)*(1 - 1/COND) */
- /* > MODE = 5 sets D to random numbers in the range */
- /* > ( 1/COND , 1 ) such that their logarithms */
- /* > are uniformly distributed. */
- /* > MODE = 6 set D to random numbers from same distribution */
- /* > as the rest of the matrix. */
- /* > MODE < 0 has the same meaning as ABS(MODE), except that */
- /* > the order of the elements of D is reversed. */
- /* > Thus if MODE is positive, D has entries ranging from */
- /* > 1 to 1/COND, if negative, from 1/COND to 1, */
- /* > If SYM='H', and MODE is neither 0, 6, nor -6, then */
- /* > the elements of D will also be multiplied by a random */
- /* > sign (i.e., +1 or -1.) */
- /* > Not modified. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] COND */
- /* > \verbatim */
- /* > COND is DOUBLE PRECISION */
- /* > On entry, this is used as described under MODE above. */
- /* > If used, it must be >= 1. Not modified. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] DMAX */
- /* > \verbatim */
- /* > DMAX is DOUBLE PRECISION */
- /* > If MODE is neither -6, 0 nor 6, the contents of D, as */
- /* > computed according to MODE and COND, will be scaled by */
- /* > DMAX / f2cmax(abs(D(i))); thus, the maximum absolute eigen- or */
- /* > singular value (which is to say the norm) will be abs(DMAX). */
- /* > Note that DMAX need not be positive: if DMAX is negative */
- /* > (or zero), D will be scaled by a negative number (or zero). */
- /* > Not modified. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] RANK */
- /* > \verbatim */
- /* > RANK is INTEGER */
- /* > The rank of matrix to be generated for modes 1,2,3 only. */
- /* > D( RANK+1:N ) = 0. */
- /* > Not modified. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] KL */
- /* > \verbatim */
- /* > KL is INTEGER */
- /* > This specifies the lower bandwidth of the matrix. For */
- /* > example, KL=0 implies upper triangular, KL=1 implies upper */
- /* > Hessenberg, and KL being at least M-1 means that the matrix */
- /* > has full lower bandwidth. KL must equal KU if the matrix */
- /* > is symmetric or hermitian. */
- /* > Not modified. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] KU */
- /* > \verbatim */
- /* > KU is INTEGER */
- /* > This specifies the upper bandwidth of the matrix. For */
- /* > example, KU=0 implies lower triangular, KU=1 implies lower */
- /* > Hessenberg, and KU being at least N-1 means that the matrix */
- /* > has full upper bandwidth. KL must equal KU if the matrix */
- /* > is symmetric or hermitian. */
- /* > Not modified. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] PACK */
- /* > \verbatim */
- /* > PACK is CHARACTER*1 */
- /* > This specifies packing of matrix as follows: */
- /* > 'N' => no packing */
- /* > 'U' => zero out all subdiagonal entries (if symmetric */
- /* > or hermitian) */
- /* > 'L' => zero out all superdiagonal entries (if symmetric */
- /* > or hermitian) */
- /* > 'C' => store the upper triangle columnwise (only if the */
- /* > matrix is symmetric, hermitian, or upper triangular) */
- /* > 'R' => store the lower triangle columnwise (only if the */
- /* > matrix is symmetric, hermitian, or lower triangular) */
- /* > 'B' => store the lower triangle in band storage scheme */
- /* > (only if the matrix is symmetric, hermitian, or */
- /* > lower triangular) */
- /* > 'Q' => store the upper triangle in band storage scheme */
- /* > (only if the matrix is symmetric, hermitian, or */
- /* > upper triangular) */
- /* > 'Z' => store the entire matrix in band storage scheme */
- /* > (pivoting can be provided for by using this */
- /* > option to store A in the trailing rows of */
- /* > the allocated storage) */
- /* > */
- /* > Using these options, the various LAPACK packed and banded */
- /* > storage schemes can be obtained: */
- /* > GB - use 'Z' */
- /* > PB, SB, HB, or TB - use 'B' or 'Q' */
- /* > PP, SP, HB, or TP - use 'C' or 'R' */
- /* > */
- /* > If two calls to ZLATMT differ only in the PACK parameter, */
- /* > they will generate mathematically equivalent matrices. */
- /* > Not modified. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] A */
- /* > \verbatim */
- /* > A is COMPLEX*16 array, dimension ( LDA, N ) */
- /* > On exit A is the desired test matrix. A is first generated */
- /* > in full (unpacked) form, and then packed, if so specified */
- /* > by PACK. Thus, the first M elements of the first N */
- /* > columns will always be modified. If PACK specifies a */
- /* > packed or banded storage scheme, all LDA elements of the */
- /* > first N columns will be modified; the elements of the */
- /* > array which do not correspond to elements of the generated */
- /* > matrix are set to zero. */
- /* > Modified. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDA */
- /* > \verbatim */
- /* > LDA is INTEGER */
- /* > LDA specifies the first dimension of A as declared in the */
- /* > calling program. If PACK='N', 'U', 'L', 'C', or 'R', then */
- /* > LDA must be at least M. If PACK='B' or 'Q', then LDA must */
- /* > be at least MIN( KL, M-1) (which is equal to MIN(KU,N-1)). */
- /* > If PACK='Z', LDA must be large enough to hold the packed */
- /* > array: MIN( KU, N-1) + MIN( KL, M-1) + 1. */
- /* > Not modified. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > WORK is COMPLEX*16 array, dimension ( 3*MAX( N, M ) ) */
- /* > Workspace. */
- /* > Modified. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > Error code. On exit, INFO will be set to one of the */
- /* > following values: */
- /* > 0 => normal return */
- /* > -1 => M negative or unequal to N and SYM='S', 'H', or 'P' */
- /* > -2 => N negative */
- /* > -3 => DIST illegal string */
- /* > -5 => SYM illegal string */
- /* > -7 => MODE not in range -6 to 6 */
- /* > -8 => COND less than 1.0, and MODE neither -6, 0 nor 6 */
- /* > -10 => KL negative */
- /* > -11 => KU negative, or SYM is not 'N' and KU is not equal to */
- /* > KL */
- /* > -12 => PACK illegal string, or PACK='U' or 'L', and SYM='N'; */
- /* > or PACK='C' or 'Q' and SYM='N' and KL is not zero; */
- /* > or PACK='R' or 'B' and SYM='N' and KU is not zero; */
- /* > or PACK='U', 'L', 'C', 'R', 'B', or 'Q', and M is not */
- /* > N. */
- /* > -14 => LDA is less than M, or PACK='Z' and LDA is less than */
- /* > MIN(KU,N-1) + MIN(KL,M-1) + 1. */
- /* > 1 => Error return from DLATM7 */
- /* > 2 => Cannot scale to DMAX (f2cmax. sing. value is 0) */
- /* > 3 => Error return from ZLAGGE, ZLAGHE or ZLAGSY */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date December 2016 */
-
- /* > \ingroup complex16_matgen */
-
- /* ===================================================================== */
- /* Subroutine */ void zlatmt_(integer *m, integer *n, char *dist, integer *
- iseed, char *sym, doublereal *d__, integer *mode, doublereal *cond,
- doublereal *dmax__, integer *rank, integer *kl, integer *ku, char *
- pack, doublecomplex *a, integer *lda, doublecomplex *work, integer *
- info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5, i__6;
- doublereal d__1, d__2, d__3;
- doublecomplex z__1, z__2, z__3;
- logical L__1;
-
- /* Local variables */
- integer ilda, icol;
- doublereal temp;
- logical csym;
- integer irow, isym;
- doublecomplex c__;
- integer i__, j, k;
- doublecomplex s;
- doublereal alpha, angle, realc;
- integer ipack, ioffg;
- extern /* Subroutine */ void dscal_(integer *, doublereal *, doublereal *,
- integer *);
- extern logical lsame_(char *, char *);
- integer iinfo, idist, mnmin;
- doublecomplex extra;
- integer iskew;
- doublecomplex dummy, ztemp;
- extern /* Subroutine */ void dlatm7_(integer *, doublereal *, integer *,
- integer *, integer *, doublereal *, integer *, integer *, integer
- *);
- integer ic, jc, nc, il;
- doublecomplex ct;
- integer iendch, ir, jr, ipackg, mr, minlda;
- extern doublereal dlarnd_(integer *, integer *);
- doublecomplex st;
- extern /* Subroutine */ void zlagge_(integer *, integer *, integer *,
- integer *, doublereal *, doublecomplex *, integer *, integer *,
- doublecomplex *, integer *), zlaghe_(integer *, integer *,
- doublereal *, doublecomplex *, integer *, integer *,
- doublecomplex *, integer *);
- extern int xerbla_(char *, integer *, ftnlen);
- integer ioffst, irsign;
- logical givens, iltemp;
- //extern /* Double Complex */ VOID zlarnd_(doublecomplex *, integer *,
- extern doublecomplex zlarnd_(integer *,
- integer *);
- extern /* Subroutine */ void zlaset_(char *, integer *, integer *,
- doublecomplex *, doublecomplex *, doublecomplex *, integer *), zlartg_(doublecomplex *, doublecomplex *, doublereal *,
- doublecomplex *, doublecomplex *);
- logical ilextr;
- extern /* Subroutine */ void zlagsy_(integer *, integer *, doublereal *,
- doublecomplex *, integer *, integer *, doublecomplex *, integer *)
- ;
- integer ir1, ir2, isympk;
- logical topdwn;
- extern /* Subroutine */ void zlarot_(logical *, logical *, logical *,
- integer *, doublecomplex *, doublecomplex *, doublecomplex *,
- integer *, doublecomplex *, doublecomplex *);
- integer jch, llb, jkl, jku, uub;
-
-
- /* -- LAPACK computational routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* December 2016 */
-
-
- /* ===================================================================== */
-
-
- /* 1) Decode and Test the input parameters. */
- /* Initialize flags & seed. */
-
- /* Parameter adjustments */
- --iseed;
- --d__;
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --work;
-
- /* Function Body */
- *info = 0;
-
- /* Quick return if possible */
-
- if (*m == 0 || *n == 0) {
- return;
- }
-
- /* Decode DIST */
-
- if (lsame_(dist, "U")) {
- idist = 1;
- } else if (lsame_(dist, "S")) {
- idist = 2;
- } else if (lsame_(dist, "N")) {
- idist = 3;
- } else {
- idist = -1;
- }
-
- /* Decode SYM */
-
- if (lsame_(sym, "N")) {
- isym = 1;
- irsign = 0;
- csym = FALSE_;
- } else if (lsame_(sym, "P")) {
- isym = 2;
- irsign = 0;
- csym = FALSE_;
- } else if (lsame_(sym, "S")) {
- isym = 2;
- irsign = 0;
- csym = TRUE_;
- } else if (lsame_(sym, "H")) {
- isym = 2;
- irsign = 1;
- csym = FALSE_;
- } else {
- isym = -1;
- }
-
- /* Decode PACK */
-
- isympk = 0;
- if (lsame_(pack, "N")) {
- ipack = 0;
- } else if (lsame_(pack, "U")) {
- ipack = 1;
- isympk = 1;
- } else if (lsame_(pack, "L")) {
- ipack = 2;
- isympk = 1;
- } else if (lsame_(pack, "C")) {
- ipack = 3;
- isympk = 2;
- } else if (lsame_(pack, "R")) {
- ipack = 4;
- isympk = 3;
- } else if (lsame_(pack, "B")) {
- ipack = 5;
- isympk = 3;
- } else if (lsame_(pack, "Q")) {
- ipack = 6;
- isympk = 2;
- } else if (lsame_(pack, "Z")) {
- ipack = 7;
- } else {
- ipack = -1;
- }
-
- /* Set certain internal parameters */
-
- mnmin = f2cmin(*m,*n);
- /* Computing MIN */
- i__1 = *kl, i__2 = *m - 1;
- llb = f2cmin(i__1,i__2);
- /* Computing MIN */
- i__1 = *ku, i__2 = *n - 1;
- uub = f2cmin(i__1,i__2);
- /* Computing MIN */
- i__1 = *m, i__2 = *n + llb;
- mr = f2cmin(i__1,i__2);
- /* Computing MIN */
- i__1 = *n, i__2 = *m + uub;
- nc = f2cmin(i__1,i__2);
-
- if (ipack == 5 || ipack == 6) {
- minlda = uub + 1;
- } else if (ipack == 7) {
- minlda = llb + uub + 1;
- } else {
- minlda = *m;
- }
-
- /* Use Givens rotation method if bandwidth small enough, */
- /* or if LDA is too small to store the matrix unpacked. */
-
- givens = FALSE_;
- if (isym == 1) {
- /* Computing MAX */
- i__1 = 1, i__2 = mr + nc;
- if ((doublereal) (llb + uub) < (doublereal) f2cmax(i__1,i__2) * .3) {
- givens = TRUE_;
- }
- } else {
- if (llb << 1 < *m) {
- givens = TRUE_;
- }
- }
- if (*lda < *m && *lda >= minlda) {
- givens = TRUE_;
- }
-
- /* Set INFO if an error */
-
- if (*m < 0) {
- *info = -1;
- } else if (*m != *n && isym != 1) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (idist == -1) {
- *info = -3;
- } else if (isym == -1) {
- *info = -5;
- } else if (abs(*mode) > 6) {
- *info = -7;
- } else if (*mode != 0 && abs(*mode) != 6 && *cond < 1.) {
- *info = -8;
- } else if (*kl < 0) {
- *info = -10;
- } else if (*ku < 0 || isym != 1 && *kl != *ku) {
- *info = -11;
- } else if (ipack == -1 || isympk == 1 && isym == 1 || isympk == 2 && isym
- == 1 && *kl > 0 || isympk == 3 && isym == 1 && *ku > 0 || isympk
- != 0 && *m != *n) {
- *info = -12;
- } else if (*lda < f2cmax(1,minlda)) {
- *info = -14;
- }
-
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("ZLATMT", &i__1, 6);
- return;
- }
-
- /* Initialize random number generator */
-
- for (i__ = 1; i__ <= 4; ++i__) {
- iseed[i__] = (i__1 = iseed[i__], abs(i__1)) % 4096;
- /* L100: */
- }
-
- if (iseed[4] % 2 != 1) {
- ++iseed[4];
- }
-
- /* 2) Set up D if indicated. */
-
- /* Compute D according to COND and MODE */
-
- dlatm7_(mode, cond, &irsign, &idist, &iseed[1], &d__[1], &mnmin, rank, &
- iinfo);
- if (iinfo != 0) {
- *info = 1;
- return;
- }
-
- /* Choose Top-Down if D is (apparently) increasing, */
- /* Bottom-Up if D is (apparently) decreasing. */
-
- if (abs(d__[1]) <= (d__1 = d__[*rank], abs(d__1))) {
- topdwn = TRUE_;
- } else {
- topdwn = FALSE_;
- }
-
- if (*mode != 0 && abs(*mode) != 6) {
-
- /* Scale by DMAX */
-
- temp = abs(d__[1]);
- i__1 = *rank;
- for (i__ = 2; i__ <= i__1; ++i__) {
- /* Computing MAX */
- d__2 = temp, d__3 = (d__1 = d__[i__], abs(d__1));
- temp = f2cmax(d__2,d__3);
- /* L110: */
- }
-
- if (temp > 0.) {
- alpha = *dmax__ / temp;
- } else {
- *info = 2;
- return;
- }
-
- dscal_(rank, &alpha, &d__[1], &c__1);
-
- }
-
- zlaset_("Full", lda, n, &c_b1, &c_b1, &a[a_offset], lda);
-
- /* 3) Generate Banded Matrix using Givens rotations. */
- /* Also the special case of UUB=LLB=0 */
-
- /* Compute Addressing constants to cover all */
- /* storage formats. Whether GE, HE, SY, GB, HB, or SB, */
- /* upper or lower triangle or both, */
- /* the (i,j)-th element is in */
- /* A( i - ISKEW*j + IOFFST, j ) */
-
- if (ipack > 4) {
- ilda = *lda - 1;
- iskew = 1;
- if (ipack > 5) {
- ioffst = uub + 1;
- } else {
- ioffst = 1;
- }
- } else {
- ilda = *lda;
- iskew = 0;
- ioffst = 0;
- }
-
- /* IPACKG is the format that the matrix is generated in. If this is */
- /* different from IPACK, then the matrix must be repacked at the */
- /* end. It also signals how to compute the norm, for scaling. */
-
- ipackg = 0;
-
- /* Diagonal Matrix -- We are done, unless it */
- /* is to be stored HP/SP/PP/TP (PACK='R' or 'C') */
-
- if (llb == 0 && uub == 0) {
- i__1 = mnmin;
- for (j = 1; j <= i__1; ++j) {
- i__2 = (1 - iskew) * j + ioffst + j * a_dim1;
- i__3 = j;
- z__1.r = d__[i__3], z__1.i = 0.;
- a[i__2].r = z__1.r, a[i__2].i = z__1.i;
- /* L120: */
- }
-
- if (ipack <= 2 || ipack >= 5) {
- ipackg = ipack;
- }
-
- } else if (givens) {
-
- /* Check whether to use Givens rotations, */
- /* Householder transformations, or nothing. */
-
- if (isym == 1) {
-
- /* Non-symmetric -- A = U D V */
-
- if (ipack > 4) {
- ipackg = ipack;
- } else {
- ipackg = 0;
- }
-
- i__1 = mnmin;
- for (j = 1; j <= i__1; ++j) {
- i__2 = (1 - iskew) * j + ioffst + j * a_dim1;
- i__3 = j;
- z__1.r = d__[i__3], z__1.i = 0.;
- a[i__2].r = z__1.r, a[i__2].i = z__1.i;
- /* L130: */
- }
-
- if (topdwn) {
- jkl = 0;
- i__1 = uub;
- for (jku = 1; jku <= i__1; ++jku) {
-
- /* Transform from bandwidth JKL, JKU-1 to JKL, JKU */
-
- /* Last row actually rotated is M */
- /* Last column actually rotated is MIN( M+JKU, N ) */
-
- /* Computing MIN */
- i__3 = *m + jku;
- i__2 = f2cmin(i__3,*n) + jkl - 1;
- for (jr = 1; jr <= i__2; ++jr) {
- extra.r = 0., extra.i = 0.;
- angle = dlarnd_(&c__1, &iseed[1]) *
- 6.2831853071795864769252867663;
- d__1 = cos(angle);
- //zlarnd_(&z__2, &c__5, &iseed[1]);
- z__2=zlarnd_(&c__5, &iseed[1]);
- z__1.r = d__1 * z__2.r, z__1.i = d__1 * z__2.i;
- c__.r = z__1.r, c__.i = z__1.i;
- d__1 = sin(angle);
- //zlarnd_(&z__2, &c__5, &iseed[1]);
- z__2=zlarnd_( &c__5, &iseed[1]);
- z__1.r = d__1 * z__2.r, z__1.i = d__1 * z__2.i;
- s.r = z__1.r, s.i = z__1.i;
- /* Computing MAX */
- i__3 = 1, i__4 = jr - jkl;
- icol = f2cmax(i__3,i__4);
- if (jr < *m) {
- /* Computing MIN */
- i__3 = *n, i__4 = jr + jku;
- il = f2cmin(i__3,i__4) + 1 - icol;
- L__1 = jr > jkl;
- zlarot_(&c_true, &L__1, &c_false, &il, &c__, &s, &
- a[jr - iskew * icol + ioffst + icol *
- a_dim1], &ilda, &extra, &dummy);
- }
-
- /* Chase "EXTRA" back up */
-
- ir = jr;
- ic = icol;
- i__3 = -jkl - jku;
- for (jch = jr - jkl; i__3 < 0 ? jch >= 1 : jch <= 1;
- jch += i__3) {
- if (ir < *m) {
- zlartg_(&a[ir + 1 - iskew * (ic + 1) + ioffst
- + (ic + 1) * a_dim1], &extra, &realc,
- &s, &dummy);
- d__1 = dlarnd_(&c__5, &iseed[1]);
- dummy.r = d__1, dummy.i = 0.;
- z__2.r = realc * dummy.r, z__2.i = realc *
- dummy.i;
- d_cnjg(&z__1, &z__2);
- c__.r = z__1.r, c__.i = z__1.i;
- z__3.r = -s.r, z__3.i = -s.i;
- z__2.r = z__3.r * dummy.r - z__3.i * dummy.i,
- z__2.i = z__3.r * dummy.i + z__3.i *
- dummy.r;
- d_cnjg(&z__1, &z__2);
- s.r = z__1.r, s.i = z__1.i;
- }
- /* Computing MAX */
- i__4 = 1, i__5 = jch - jku;
- irow = f2cmax(i__4,i__5);
- il = ir + 2 - irow;
- ztemp.r = 0., ztemp.i = 0.;
- iltemp = jch > jku;
- zlarot_(&c_false, &iltemp, &c_true, &il, &c__, &s,
- &a[irow - iskew * ic + ioffst + ic *
- a_dim1], &ilda, &ztemp, &extra);
- if (iltemp) {
- zlartg_(&a[irow + 1 - iskew * (ic + 1) +
- ioffst + (ic + 1) * a_dim1], &ztemp, &
- realc, &s, &dummy);
- //zlarnd_(&z__1, &c__5, &iseed[1]);
- z__1=zlarnd_( &c__5, &iseed[1]);
- dummy.r = z__1.r, dummy.i = z__1.i;
- z__2.r = realc * dummy.r, z__2.i = realc *
- dummy.i;
- d_cnjg(&z__1, &z__2);
- c__.r = z__1.r, c__.i = z__1.i;
- z__3.r = -s.r, z__3.i = -s.i;
- z__2.r = z__3.r * dummy.r - z__3.i * dummy.i,
- z__2.i = z__3.r * dummy.i + z__3.i *
- dummy.r;
- d_cnjg(&z__1, &z__2);
- s.r = z__1.r, s.i = z__1.i;
-
- /* Computing MAX */
- i__4 = 1, i__5 = jch - jku - jkl;
- icol = f2cmax(i__4,i__5);
- il = ic + 2 - icol;
- extra.r = 0., extra.i = 0.;
- L__1 = jch > jku + jkl;
- zlarot_(&c_true, &L__1, &c_true, &il, &c__, &
- s, &a[irow - iskew * icol + ioffst +
- icol * a_dim1], &ilda, &extra, &ztemp)
- ;
- ic = icol;
- ir = irow;
- }
- /* L140: */
- }
- /* L150: */
- }
- /* L160: */
- }
-
- jku = uub;
- i__1 = llb;
- for (jkl = 1; jkl <= i__1; ++jkl) {
-
- /* Transform from bandwidth JKL-1, JKU to JKL, JKU */
-
- /* Computing MIN */
- i__3 = *n + jkl;
- i__2 = f2cmin(i__3,*m) + jku - 1;
- for (jc = 1; jc <= i__2; ++jc) {
- extra.r = 0., extra.i = 0.;
- angle = dlarnd_(&c__1, &iseed[1]) *
- 6.2831853071795864769252867663;
- d__1 = cos(angle);
- //zlarnd_(&z__2, &c__5, &iseed[1]);
- z__2=zlarnd_(&c__5, &iseed[1]);
- z__1.r = d__1 * z__2.r, z__1.i = d__1 * z__2.i;
- c__.r = z__1.r, c__.i = z__1.i;
- d__1 = sin(angle);
- //zlarnd_(&z__2, &c__5, &iseed[1]);
- z__2=zlarnd_(&c__5, &iseed[1]);
- z__1.r = d__1 * z__2.r, z__1.i = d__1 * z__2.i;
- s.r = z__1.r, s.i = z__1.i;
- /* Computing MAX */
- i__3 = 1, i__4 = jc - jku;
- irow = f2cmax(i__3,i__4);
- if (jc < *n) {
- /* Computing MIN */
- i__3 = *m, i__4 = jc + jkl;
- il = f2cmin(i__3,i__4) + 1 - irow;
- L__1 = jc > jku;
- zlarot_(&c_false, &L__1, &c_false, &il, &c__, &s,
- &a[irow - iskew * jc + ioffst + jc *
- a_dim1], &ilda, &extra, &dummy);
- }
-
- /* Chase "EXTRA" back up */
-
- ic = jc;
- ir = irow;
- i__3 = -jkl - jku;
- for (jch = jc - jku; i__3 < 0 ? jch >= 1 : jch <= 1;
- jch += i__3) {
- if (ic < *n) {
- zlartg_(&a[ir + 1 - iskew * (ic + 1) + ioffst
- + (ic + 1) * a_dim1], &extra, &realc,
- &s, &dummy);
- //zlarnd_(&z__1, &c__5, &iseed[1]);
- z__1=zlarnd_(&c__5, &iseed[1]);
- dummy.r = z__1.r, dummy.i = z__1.i;
- z__2.r = realc * dummy.r, z__2.i = realc *
- dummy.i;
- d_cnjg(&z__1, &z__2);
- c__.r = z__1.r, c__.i = z__1.i;
- z__3.r = -s.r, z__3.i = -s.i;
- z__2.r = z__3.r * dummy.r - z__3.i * dummy.i,
- z__2.i = z__3.r * dummy.i + z__3.i *
- dummy.r;
- d_cnjg(&z__1, &z__2);
- s.r = z__1.r, s.i = z__1.i;
- }
- /* Computing MAX */
- i__4 = 1, i__5 = jch - jkl;
- icol = f2cmax(i__4,i__5);
- il = ic + 2 - icol;
- ztemp.r = 0., ztemp.i = 0.;
- iltemp = jch > jkl;
- zlarot_(&c_true, &iltemp, &c_true, &il, &c__, &s,
- &a[ir - iskew * icol + ioffst + icol *
- a_dim1], &ilda, &ztemp, &extra);
- if (iltemp) {
- zlartg_(&a[ir + 1 - iskew * (icol + 1) +
- ioffst + (icol + 1) * a_dim1], &ztemp,
- &realc, &s, &dummy);
- //zlarnd_(&z__1, &c__5, &iseed[1]);
- z__1=zlarnd_(&c__5, &iseed[1]);
- dummy.r = z__1.r, dummy.i = z__1.i;
- z__2.r = realc * dummy.r, z__2.i = realc *
- dummy.i;
- d_cnjg(&z__1, &z__2);
- c__.r = z__1.r, c__.i = z__1.i;
- z__3.r = -s.r, z__3.i = -s.i;
- z__2.r = z__3.r * dummy.r - z__3.i * dummy.i,
- z__2.i = z__3.r * dummy.i + z__3.i *
- dummy.r;
- d_cnjg(&z__1, &z__2);
- s.r = z__1.r, s.i = z__1.i;
- /* Computing MAX */
- i__4 = 1, i__5 = jch - jkl - jku;
- irow = f2cmax(i__4,i__5);
- il = ir + 2 - irow;
- extra.r = 0., extra.i = 0.;
- L__1 = jch > jkl + jku;
- zlarot_(&c_false, &L__1, &c_true, &il, &c__, &
- s, &a[irow - iskew * icol + ioffst +
- icol * a_dim1], &ilda, &extra, &ztemp)
- ;
- ic = icol;
- ir = irow;
- }
- /* L170: */
- }
- /* L180: */
- }
- /* L190: */
- }
-
- } else {
-
- /* Bottom-Up -- Start at the bottom right. */
-
- jkl = 0;
- i__1 = uub;
- for (jku = 1; jku <= i__1; ++jku) {
-
- /* Transform from bandwidth JKL, JKU-1 to JKL, JKU */
-
- /* First row actually rotated is M */
- /* First column actually rotated is MIN( M+JKU, N ) */
-
- /* Computing MIN */
- i__2 = *m, i__3 = *n + jkl;
- iendch = f2cmin(i__2,i__3) - 1;
- /* Computing MIN */
- i__2 = *m + jku;
- i__3 = 1 - jkl;
- for (jc = f2cmin(i__2,*n) - 1; jc >= i__3; --jc) {
- extra.r = 0., extra.i = 0.;
- angle = dlarnd_(&c__1, &iseed[1]) *
- 6.2831853071795864769252867663;
- d__1 = cos(angle);
- //zlarnd_(&z__2, &c__5, &iseed[1]);
- z__2=zlarnd_( &c__5, &iseed[1]);
- z__1.r = d__1 * z__2.r, z__1.i = d__1 * z__2.i;
- c__.r = z__1.r, c__.i = z__1.i;
- d__1 = sin(angle);
- //zlarnd_(&z__2, &c__5, &iseed[1]);
- z__2=zlarnd_( &c__5, &iseed[1]);
- z__1.r = d__1 * z__2.r, z__1.i = d__1 * z__2.i;
- s.r = z__1.r, s.i = z__1.i;
- /* Computing MAX */
- i__2 = 1, i__4 = jc - jku + 1;
- irow = f2cmax(i__2,i__4);
- if (jc > 0) {
- /* Computing MIN */
- i__2 = *m, i__4 = jc + jkl + 1;
- il = f2cmin(i__2,i__4) + 1 - irow;
- L__1 = jc + jkl < *m;
- zlarot_(&c_false, &c_false, &L__1, &il, &c__, &s,
- &a[irow - iskew * jc + ioffst + jc *
- a_dim1], &ilda, &dummy, &extra);
- }
-
- /* Chase "EXTRA" back down */
-
- ic = jc;
- i__2 = iendch;
- i__4 = jkl + jku;
- for (jch = jc + jkl; i__4 < 0 ? jch >= i__2 : jch <=
- i__2; jch += i__4) {
- ilextr = ic > 0;
- if (ilextr) {
- zlartg_(&a[jch - iskew * ic + ioffst + ic *
- a_dim1], &extra, &realc, &s, &dummy);
- //zlarnd_(&z__1, &c__5, &iseed[1]);
- z__1=zlarnd_(&c__5, &iseed[1]);
- dummy.r = z__1.r, dummy.i = z__1.i;
- z__1.r = realc * dummy.r, z__1.i = realc *
- dummy.i;
- c__.r = z__1.r, c__.i = z__1.i;
- z__1.r = s.r * dummy.r - s.i * dummy.i,
- z__1.i = s.r * dummy.i + s.i *
- dummy.r;
- s.r = z__1.r, s.i = z__1.i;
- }
- ic = f2cmax(1,ic);
- /* Computing MIN */
- i__5 = *n - 1, i__6 = jch + jku;
- icol = f2cmin(i__5,i__6);
- iltemp = jch + jku < *n;
- ztemp.r = 0., ztemp.i = 0.;
- i__5 = icol + 2 - ic;
- zlarot_(&c_true, &ilextr, &iltemp, &i__5, &c__, &
- s, &a[jch - iskew * ic + ioffst + ic *
- a_dim1], &ilda, &extra, &ztemp);
- if (iltemp) {
- zlartg_(&a[jch - iskew * icol + ioffst + icol
- * a_dim1], &ztemp, &realc, &s, &dummy)
- ;
- //zlarnd_(&z__1, &c__5, &iseed[1]);
- z__1=zlarnd_(&c__5, &iseed[1]);
- dummy.r = z__1.r, dummy.i = z__1.i;
- z__1.r = realc * dummy.r, z__1.i = realc *
- dummy.i;
- c__.r = z__1.r, c__.i = z__1.i;
- z__1.r = s.r * dummy.r - s.i * dummy.i,
- z__1.i = s.r * dummy.i + s.i *
- dummy.r;
- s.r = z__1.r, s.i = z__1.i;
- /* Computing MIN */
- i__5 = iendch, i__6 = jch + jkl + jku;
- il = f2cmin(i__5,i__6) + 2 - jch;
- extra.r = 0., extra.i = 0.;
- L__1 = jch + jkl + jku <= iendch;
- zlarot_(&c_false, &c_true, &L__1, &il, &c__, &
- s, &a[jch - iskew * icol + ioffst +
- icol * a_dim1], &ilda, &ztemp, &extra)
- ;
- ic = icol;
- }
- /* L200: */
- }
- /* L210: */
- }
- /* L220: */
- }
-
- jku = uub;
- i__1 = llb;
- for (jkl = 1; jkl <= i__1; ++jkl) {
-
- /* Transform from bandwidth JKL-1, JKU to JKL, JKU */
-
- /* First row actually rotated is MIN( N+JKL, M ) */
- /* First column actually rotated is N */
-
- /* Computing MIN */
- i__3 = *n, i__4 = *m + jku;
- iendch = f2cmin(i__3,i__4) - 1;
- /* Computing MIN */
- i__3 = *n + jkl;
- i__4 = 1 - jku;
- for (jr = f2cmin(i__3,*m) - 1; jr >= i__4; --jr) {
- extra.r = 0., extra.i = 0.;
- angle = dlarnd_(&c__1, &iseed[1]) *
- 6.2831853071795864769252867663;
- d__1 = cos(angle);
- //zlarnd_(&z__2, &c__5, &iseed[1]);
- z__2=zlarnd_(&c__5, &iseed[1]);
- z__1.r = d__1 * z__2.r, z__1.i = d__1 * z__2.i;
- c__.r = z__1.r, c__.i = z__1.i;
- d__1 = sin(angle);
- //zlarnd_(&z__2, &c__5, &iseed[1]);
- z__2=zlarnd_(&c__5, &iseed[1]);
- z__1.r = d__1 * z__2.r, z__1.i = d__1 * z__2.i;
- s.r = z__1.r, s.i = z__1.i;
- /* Computing MAX */
- i__3 = 1, i__2 = jr - jkl + 1;
- icol = f2cmax(i__3,i__2);
- if (jr > 0) {
- /* Computing MIN */
- i__3 = *n, i__2 = jr + jku + 1;
- il = f2cmin(i__3,i__2) + 1 - icol;
- L__1 = jr + jku < *n;
- zlarot_(&c_true, &c_false, &L__1, &il, &c__, &s, &
- a[jr - iskew * icol + ioffst + icol *
- a_dim1], &ilda, &dummy, &extra);
- }
-
- /* Chase "EXTRA" back down */
-
- ir = jr;
- i__3 = iendch;
- i__2 = jkl + jku;
- for (jch = jr + jku; i__2 < 0 ? jch >= i__3 : jch <=
- i__3; jch += i__2) {
- ilextr = ir > 0;
- if (ilextr) {
- zlartg_(&a[ir - iskew * jch + ioffst + jch *
- a_dim1], &extra, &realc, &s, &dummy);
- //zlarnd_(&z__1, &c__5, &iseed[1]);
- z__1=zlarnd_( &c__5, &iseed[1]);
- dummy.r = z__1.r, dummy.i = z__1.i;
- z__1.r = realc * dummy.r, z__1.i = realc *
- dummy.i;
- c__.r = z__1.r, c__.i = z__1.i;
- z__1.r = s.r * dummy.r - s.i * dummy.i,
- z__1.i = s.r * dummy.i + s.i *
- dummy.r;
- s.r = z__1.r, s.i = z__1.i;
- }
- ir = f2cmax(1,ir);
- /* Computing MIN */
- i__5 = *m - 1, i__6 = jch + jkl;
- irow = f2cmin(i__5,i__6);
- iltemp = jch + jkl < *m;
- ztemp.r = 0., ztemp.i = 0.;
- i__5 = irow + 2 - ir;
- zlarot_(&c_false, &ilextr, &iltemp, &i__5, &c__, &
- s, &a[ir - iskew * jch + ioffst + jch *
- a_dim1], &ilda, &extra, &ztemp);
- if (iltemp) {
- zlartg_(&a[irow - iskew * jch + ioffst + jch *
- a_dim1], &ztemp, &realc, &s, &dummy);
- //zlarnd_(&z__1, &c__5, &iseed[1]);
- z__1=zlarnd_(&c__5, &iseed[1]);
- dummy.r = z__1.r, dummy.i = z__1.i;
- z__1.r = realc * dummy.r, z__1.i = realc *
- dummy.i;
- c__.r = z__1.r, c__.i = z__1.i;
- z__1.r = s.r * dummy.r - s.i * dummy.i,
- z__1.i = s.r * dummy.i + s.i *
- dummy.r;
- s.r = z__1.r, s.i = z__1.i;
- /* Computing MIN */
- i__5 = iendch, i__6 = jch + jkl + jku;
- il = f2cmin(i__5,i__6) + 2 - jch;
- extra.r = 0., extra.i = 0.;
- L__1 = jch + jkl + jku <= iendch;
- zlarot_(&c_true, &c_true, &L__1, &il, &c__, &
- s, &a[irow - iskew * jch + ioffst +
- jch * a_dim1], &ilda, &ztemp, &extra);
- ir = irow;
- }
- /* L230: */
- }
- /* L240: */
- }
- /* L250: */
- }
-
- }
-
- } else {
-
- /* Symmetric -- A = U D U' */
- /* Hermitian -- A = U D U* */
-
- ipackg = ipack;
- ioffg = ioffst;
-
- if (topdwn) {
-
- /* Top-Down -- Generate Upper triangle only */
-
- if (ipack >= 5) {
- ipackg = 6;
- ioffg = uub + 1;
- } else {
- ipackg = 1;
- }
-
- i__1 = mnmin;
- for (j = 1; j <= i__1; ++j) {
- i__4 = (1 - iskew) * j + ioffg + j * a_dim1;
- i__2 = j;
- z__1.r = d__[i__2], z__1.i = 0.;
- a[i__4].r = z__1.r, a[i__4].i = z__1.i;
- /* L260: */
- }
-
- i__1 = uub;
- for (k = 1; k <= i__1; ++k) {
- i__4 = *n - 1;
- for (jc = 1; jc <= i__4; ++jc) {
- /* Computing MAX */
- i__2 = 1, i__3 = jc - k;
- irow = f2cmax(i__2,i__3);
- /* Computing MIN */
- i__2 = jc + 1, i__3 = k + 2;
- il = f2cmin(i__2,i__3);
- extra.r = 0., extra.i = 0.;
- i__2 = jc - iskew * (jc + 1) + ioffg + (jc + 1) *
- a_dim1;
- ztemp.r = a[i__2].r, ztemp.i = a[i__2].i;
- angle = dlarnd_(&c__1, &iseed[1]) *
- 6.2831853071795864769252867663;
- d__1 = cos(angle);
- //zlarnd_(&z__2, &c__5, &iseed[1]);
- z__2=zlarnd_(&c__5, &iseed[1]);
- z__1.r = d__1 * z__2.r, z__1.i = d__1 * z__2.i;
- c__.r = z__1.r, c__.i = z__1.i;
- d__1 = sin(angle);
- //zlarnd_(&z__2, &c__5, &iseed[1]);
- z__2=zlarnd_( &c__5, &iseed[1]);
- z__1.r = d__1 * z__2.r, z__1.i = d__1 * z__2.i;
- s.r = z__1.r, s.i = z__1.i;
- if (csym) {
- ct.r = c__.r, ct.i = c__.i;
- st.r = s.r, st.i = s.i;
- } else {
- d_cnjg(&z__1, &ztemp);
- ztemp.r = z__1.r, ztemp.i = z__1.i;
- d_cnjg(&z__1, &c__);
- ct.r = z__1.r, ct.i = z__1.i;
- d_cnjg(&z__1, &s);
- st.r = z__1.r, st.i = z__1.i;
- }
- L__1 = jc > k;
- zlarot_(&c_false, &L__1, &c_true, &il, &c__, &s, &a[
- irow - iskew * jc + ioffg + jc * a_dim1], &
- ilda, &extra, &ztemp);
- /* Computing MIN */
- i__3 = k, i__5 = *n - jc;
- i__2 = f2cmin(i__3,i__5) + 1;
- zlarot_(&c_true, &c_true, &c_false, &i__2, &ct, &st, &
- a[(1 - iskew) * jc + ioffg + jc * a_dim1], &
- ilda, &ztemp, &dummy);
-
- /* Chase EXTRA back up the matrix */
-
- icol = jc;
- i__2 = -k;
- for (jch = jc - k; i__2 < 0 ? jch >= 1 : jch <= 1;
- jch += i__2) {
- zlartg_(&a[jch + 1 - iskew * (icol + 1) + ioffg +
- (icol + 1) * a_dim1], &extra, &realc, &s,
- &dummy);
- //zlarnd_(&z__1, &c__5, &iseed[1]);
- z__1=zlarnd_(&c__5, &iseed[1]);
- dummy.r = z__1.r, dummy.i = z__1.i;
- z__2.r = realc * dummy.r, z__2.i = realc *
- dummy.i;
- d_cnjg(&z__1, &z__2);
- c__.r = z__1.r, c__.i = z__1.i;
- z__3.r = -s.r, z__3.i = -s.i;
- z__2.r = z__3.r * dummy.r - z__3.i * dummy.i,
- z__2.i = z__3.r * dummy.i + z__3.i *
- dummy.r;
- d_cnjg(&z__1, &z__2);
- s.r = z__1.r, s.i = z__1.i;
- i__3 = jch - iskew * (jch + 1) + ioffg + (jch + 1)
- * a_dim1;
- ztemp.r = a[i__3].r, ztemp.i = a[i__3].i;
- if (csym) {
- ct.r = c__.r, ct.i = c__.i;
- st.r = s.r, st.i = s.i;
- } else {
- d_cnjg(&z__1, &ztemp);
- ztemp.r = z__1.r, ztemp.i = z__1.i;
- d_cnjg(&z__1, &c__);
- ct.r = z__1.r, ct.i = z__1.i;
- d_cnjg(&z__1, &s);
- st.r = z__1.r, st.i = z__1.i;
- }
- i__3 = k + 2;
- zlarot_(&c_true, &c_true, &c_true, &i__3, &c__, &
- s, &a[(1 - iskew) * jch + ioffg + jch *
- a_dim1], &ilda, &ztemp, &extra);
- /* Computing MAX */
- i__3 = 1, i__5 = jch - k;
- irow = f2cmax(i__3,i__5);
- /* Computing MIN */
- i__3 = jch + 1, i__5 = k + 2;
- il = f2cmin(i__3,i__5);
- extra.r = 0., extra.i = 0.;
- L__1 = jch > k;
- zlarot_(&c_false, &L__1, &c_true, &il, &ct, &st, &
- a[irow - iskew * jch + ioffg + jch *
- a_dim1], &ilda, &extra, &ztemp);
- icol = jch;
- /* L270: */
- }
- /* L280: */
- }
- /* L290: */
- }
-
- /* If we need lower triangle, copy from upper. Note that */
- /* the order of copying is chosen to work for 'q' -> 'b' */
-
- if (ipack != ipackg && ipack != 3) {
- i__1 = *n;
- for (jc = 1; jc <= i__1; ++jc) {
- irow = ioffst - iskew * jc;
- if (csym) {
- /* Computing MIN */
- i__2 = *n, i__3 = jc + uub;
- i__4 = f2cmin(i__2,i__3);
- for (jr = jc; jr <= i__4; ++jr) {
- i__2 = jr + irow + jc * a_dim1;
- i__3 = jc - iskew * jr + ioffg + jr * a_dim1;
- a[i__2].r = a[i__3].r, a[i__2].i = a[i__3].i;
- /* L300: */
- }
- } else {
- /* Computing MIN */
- i__2 = *n, i__3 = jc + uub;
- i__4 = f2cmin(i__2,i__3);
- for (jr = jc; jr <= i__4; ++jr) {
- i__2 = jr + irow + jc * a_dim1;
- d_cnjg(&z__1, &a[jc - iskew * jr + ioffg + jr
- * a_dim1]);
- a[i__2].r = z__1.r, a[i__2].i = z__1.i;
- /* L310: */
- }
- }
- /* L320: */
- }
- if (ipack == 5) {
- i__1 = *n;
- for (jc = *n - uub + 1; jc <= i__1; ++jc) {
- i__4 = uub + 1;
- for (jr = *n + 2 - jc; jr <= i__4; ++jr) {
- i__2 = jr + jc * a_dim1;
- a[i__2].r = 0., a[i__2].i = 0.;
- /* L330: */
- }
- /* L340: */
- }
- }
- if (ipackg == 6) {
- ipackg = ipack;
- } else {
- ipackg = 0;
- }
- }
- } else {
-
- /* Bottom-Up -- Generate Lower triangle only */
-
- if (ipack >= 5) {
- ipackg = 5;
- if (ipack == 6) {
- ioffg = 1;
- }
- } else {
- ipackg = 2;
- }
-
- i__1 = mnmin;
- for (j = 1; j <= i__1; ++j) {
- i__4 = (1 - iskew) * j + ioffg + j * a_dim1;
- i__2 = j;
- z__1.r = d__[i__2], z__1.i = 0.;
- a[i__4].r = z__1.r, a[i__4].i = z__1.i;
- /* L350: */
- }
-
- i__1 = uub;
- for (k = 1; k <= i__1; ++k) {
- for (jc = *n - 1; jc >= 1; --jc) {
- /* Computing MIN */
- i__4 = *n + 1 - jc, i__2 = k + 2;
- il = f2cmin(i__4,i__2);
- extra.r = 0., extra.i = 0.;
- i__4 = (1 - iskew) * jc + 1 + ioffg + jc * a_dim1;
- ztemp.r = a[i__4].r, ztemp.i = a[i__4].i;
- angle = dlarnd_(&c__1, &iseed[1]) *
- 6.2831853071795864769252867663;
- d__1 = cos(angle);
- //zlarnd_(&z__2, &c__5, &iseed[1]);
- z__2=zlarnd_(&c__5, &iseed[1]);
- z__1.r = d__1 * z__2.r, z__1.i = d__1 * z__2.i;
- c__.r = z__1.r, c__.i = z__1.i;
- d__1 = sin(angle);
- //zlarnd_(&z__2, &c__5, &iseed[1]);
- z__2=zlarnd_(&c__5, &iseed[1]);
- z__1.r = d__1 * z__2.r, z__1.i = d__1 * z__2.i;
- s.r = z__1.r, s.i = z__1.i;
- if (csym) {
- ct.r = c__.r, ct.i = c__.i;
- st.r = s.r, st.i = s.i;
- } else {
- d_cnjg(&z__1, &ztemp);
- ztemp.r = z__1.r, ztemp.i = z__1.i;
- d_cnjg(&z__1, &c__);
- ct.r = z__1.r, ct.i = z__1.i;
- d_cnjg(&z__1, &s);
- st.r = z__1.r, st.i = z__1.i;
- }
- L__1 = *n - jc > k;
- zlarot_(&c_false, &c_true, &L__1, &il, &c__, &s, &a[(
- 1 - iskew) * jc + ioffg + jc * a_dim1], &ilda,
- &ztemp, &extra);
- /* Computing MAX */
- i__4 = 1, i__2 = jc - k + 1;
- icol = f2cmax(i__4,i__2);
- i__4 = jc + 2 - icol;
- zlarot_(&c_true, &c_false, &c_true, &i__4, &ct, &st, &
- a[jc - iskew * icol + ioffg + icol * a_dim1],
- &ilda, &dummy, &ztemp);
-
- /* Chase EXTRA back down the matrix */
-
- icol = jc;
- i__4 = *n - 1;
- i__2 = k;
- for (jch = jc + k; i__2 < 0 ? jch >= i__4 : jch <=
- i__4; jch += i__2) {
- zlartg_(&a[jch - iskew * icol + ioffg + icol *
- a_dim1], &extra, &realc, &s, &dummy);
- //zlarnd_(&z__1, &c__5, &iseed[1]);
- z__1=zlarnd_(&c__5, &iseed[1]);
- dummy.r = z__1.r, dummy.i = z__1.i;
- z__1.r = realc * dummy.r, z__1.i = realc *
- dummy.i;
- c__.r = z__1.r, c__.i = z__1.i;
- z__1.r = s.r * dummy.r - s.i * dummy.i, z__1.i =
- s.r * dummy.i + s.i * dummy.r;
- s.r = z__1.r, s.i = z__1.i;
- i__3 = (1 - iskew) * jch + 1 + ioffg + jch *
- a_dim1;
- ztemp.r = a[i__3].r, ztemp.i = a[i__3].i;
- if (csym) {
- ct.r = c__.r, ct.i = c__.i;
- st.r = s.r, st.i = s.i;
- } else {
- d_cnjg(&z__1, &ztemp);
- ztemp.r = z__1.r, ztemp.i = z__1.i;
- d_cnjg(&z__1, &c__);
- ct.r = z__1.r, ct.i = z__1.i;
- d_cnjg(&z__1, &s);
- st.r = z__1.r, st.i = z__1.i;
- }
- i__3 = k + 2;
- zlarot_(&c_true, &c_true, &c_true, &i__3, &c__, &
- s, &a[jch - iskew * icol + ioffg + icol *
- a_dim1], &ilda, &extra, &ztemp);
- /* Computing MIN */
- i__3 = *n + 1 - jch, i__5 = k + 2;
- il = f2cmin(i__3,i__5);
- extra.r = 0., extra.i = 0.;
- L__1 = *n - jch > k;
- zlarot_(&c_false, &c_true, &L__1, &il, &ct, &st, &
- a[(1 - iskew) * jch + ioffg + jch *
- a_dim1], &ilda, &ztemp, &extra);
- icol = jch;
- /* L360: */
- }
- /* L370: */
- }
- /* L380: */
- }
-
- /* If we need upper triangle, copy from lower. Note that */
- /* the order of copying is chosen to work for 'b' -> 'q' */
-
- if (ipack != ipackg && ipack != 4) {
- for (jc = *n; jc >= 1; --jc) {
- irow = ioffst - iskew * jc;
- if (csym) {
- /* Computing MAX */
- i__2 = 1, i__4 = jc - uub;
- i__1 = f2cmax(i__2,i__4);
- for (jr = jc; jr >= i__1; --jr) {
- i__2 = jr + irow + jc * a_dim1;
- i__4 = jc - iskew * jr + ioffg + jr * a_dim1;
- a[i__2].r = a[i__4].r, a[i__2].i = a[i__4].i;
- /* L390: */
- }
- } else {
- /* Computing MAX */
- i__2 = 1, i__4 = jc - uub;
- i__1 = f2cmax(i__2,i__4);
- for (jr = jc; jr >= i__1; --jr) {
- i__2 = jr + irow + jc * a_dim1;
- d_cnjg(&z__1, &a[jc - iskew * jr + ioffg + jr
- * a_dim1]);
- a[i__2].r = z__1.r, a[i__2].i = z__1.i;
- /* L400: */
- }
- }
- /* L410: */
- }
- if (ipack == 6) {
- i__1 = uub;
- for (jc = 1; jc <= i__1; ++jc) {
- i__2 = uub + 1 - jc;
- for (jr = 1; jr <= i__2; ++jr) {
- i__4 = jr + jc * a_dim1;
- a[i__4].r = 0., a[i__4].i = 0.;
- /* L420: */
- }
- /* L430: */
- }
- }
- if (ipackg == 5) {
- ipackg = ipack;
- } else {
- ipackg = 0;
- }
- }
- }
-
- /* Ensure that the diagonal is real if Hermitian */
-
- if (! csym) {
- i__1 = *n;
- for (jc = 1; jc <= i__1; ++jc) {
- irow = ioffst + (1 - iskew) * jc;
- i__2 = irow + jc * a_dim1;
- i__4 = irow + jc * a_dim1;
- d__1 = a[i__4].r;
- z__1.r = d__1, z__1.i = 0.;
- a[i__2].r = z__1.r, a[i__2].i = z__1.i;
- /* L440: */
- }
- }
-
- }
-
- } else {
-
- /* 4) Generate Banded Matrix by first */
- /* Rotating by random Unitary matrices, */
- /* then reducing the bandwidth using Householder */
- /* transformations. */
-
- /* Note: we should get here only if LDA .ge. N */
-
- if (isym == 1) {
-
- /* Non-symmetric -- A = U D V */
-
- zlagge_(&mr, &nc, &llb, &uub, &d__[1], &a[a_offset], lda, &iseed[
- 1], &work[1], &iinfo);
- } else {
-
- /* Symmetric -- A = U D U' or */
- /* Hermitian -- A = U D U* */
-
- if (csym) {
- zlagsy_(m, &llb, &d__[1], &a[a_offset], lda, &iseed[1], &work[
- 1], &iinfo);
- } else {
- zlaghe_(m, &llb, &d__[1], &a[a_offset], lda, &iseed[1], &work[
- 1], &iinfo);
- }
- }
-
- if (iinfo != 0) {
- *info = 3;
- return;
- }
- }
-
- /* 5) Pack the matrix */
-
- if (ipack != ipackg) {
- if (ipack == 1) {
-
- /* 'U' -- Upper triangular, not packed */
-
- i__1 = *m;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = j + 1; i__ <= i__2; ++i__) {
- i__4 = i__ + j * a_dim1;
- a[i__4].r = 0., a[i__4].i = 0.;
- /* L450: */
- }
- /* L460: */
- }
-
- } else if (ipack == 2) {
-
- /* 'L' -- Lower triangular, not packed */
-
- i__1 = *m;
- for (j = 2; j <= i__1; ++j) {
- i__2 = j - 1;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__4 = i__ + j * a_dim1;
- a[i__4].r = 0., a[i__4].i = 0.;
- /* L470: */
- }
- /* L480: */
- }
-
- } else if (ipack == 3) {
-
- /* 'C' -- Upper triangle packed Columnwise. */
-
- icol = 1;
- irow = 0;
- i__1 = *m;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j;
- for (i__ = 1; i__ <= i__2; ++i__) {
- ++irow;
- if (irow > *lda) {
- irow = 1;
- ++icol;
- }
- i__4 = irow + icol * a_dim1;
- i__3 = i__ + j * a_dim1;
- a[i__4].r = a[i__3].r, a[i__4].i = a[i__3].i;
- /* L490: */
- }
- /* L500: */
- }
-
- } else if (ipack == 4) {
-
- /* 'R' -- Lower triangle packed Columnwise. */
-
- icol = 1;
- irow = 0;
- i__1 = *m;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = j; i__ <= i__2; ++i__) {
- ++irow;
- if (irow > *lda) {
- irow = 1;
- ++icol;
- }
- i__4 = irow + icol * a_dim1;
- i__3 = i__ + j * a_dim1;
- a[i__4].r = a[i__3].r, a[i__4].i = a[i__3].i;
- /* L510: */
- }
- /* L520: */
- }
-
- } else if (ipack >= 5) {
-
- /* 'B' -- The lower triangle is packed as a band matrix. */
- /* 'Q' -- The upper triangle is packed as a band matrix. */
- /* 'Z' -- The whole matrix is packed as a band matrix. */
-
- if (ipack == 5) {
- uub = 0;
- }
- if (ipack == 6) {
- llb = 0;
- }
-
- i__1 = uub;
- for (j = 1; j <= i__1; ++j) {
- /* Computing MIN */
- i__2 = j + llb;
- for (i__ = f2cmin(i__2,*m); i__ >= 1; --i__) {
- i__2 = i__ - j + uub + 1 + j * a_dim1;
- i__4 = i__ + j * a_dim1;
- a[i__2].r = a[i__4].r, a[i__2].i = a[i__4].i;
- /* L530: */
- }
- /* L540: */
- }
-
- i__1 = *n;
- for (j = uub + 2; j <= i__1; ++j) {
- /* Computing MIN */
- i__4 = j + llb;
- i__2 = f2cmin(i__4,*m);
- for (i__ = j - uub; i__ <= i__2; ++i__) {
- i__4 = i__ - j + uub + 1 + j * a_dim1;
- i__3 = i__ + j * a_dim1;
- a[i__4].r = a[i__3].r, a[i__4].i = a[i__3].i;
- /* L550: */
- }
- /* L560: */
- }
- }
-
- /* If packed, zero out extraneous elements. */
-
- /* Symmetric/Triangular Packed -- */
- /* zero out everything after A(IROW,ICOL) */
-
- if (ipack == 3 || ipack == 4) {
- i__1 = *m;
- for (jc = icol; jc <= i__1; ++jc) {
- i__2 = *lda;
- for (jr = irow + 1; jr <= i__2; ++jr) {
- i__4 = jr + jc * a_dim1;
- a[i__4].r = 0., a[i__4].i = 0.;
- /* L570: */
- }
- irow = 0;
- /* L580: */
- }
-
- } else if (ipack >= 5) {
-
- /* Packed Band -- */
- /* 1st row is now in A( UUB+2-j, j), zero above it */
- /* m-th row is now in A( M+UUB-j,j), zero below it */
- /* last non-zero diagonal is now in A( UUB+LLB+1,j ), */
- /* zero below it, too. */
-
- ir1 = uub + llb + 2;
- ir2 = uub + *m + 2;
- i__1 = *n;
- for (jc = 1; jc <= i__1; ++jc) {
- i__2 = uub + 1 - jc;
- for (jr = 1; jr <= i__2; ++jr) {
- i__4 = jr + jc * a_dim1;
- a[i__4].r = 0., a[i__4].i = 0.;
- /* L590: */
- }
- /* Computing MAX */
- /* Computing MIN */
- i__3 = ir1, i__5 = ir2 - jc;
- i__2 = 1, i__4 = f2cmin(i__3,i__5);
- i__6 = *lda;
- for (jr = f2cmax(i__2,i__4); jr <= i__6; ++jr) {
- i__2 = jr + jc * a_dim1;
- a[i__2].r = 0., a[i__2].i = 0.;
- /* L600: */
- }
- /* L610: */
- }
- }
- }
-
- return;
-
- /* End of ZLATMT */
-
- } /* zlatmt_ */
|