|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef int logical;
- typedef short int shortlogical;
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle_() continue;
- #define myceiling_(w) {ceil(w)}
- #define myhuge_(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc_(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
- #define F2C_proc_par_types 1
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
-
- /* Table of constant values */
-
- static doublecomplex c_b1 = {0.,0.};
- static doublecomplex c_b2 = {1.,0.};
- static integer c__1 = 1;
- static integer c__0 = 0;
- static integer c__5 = 5;
-
- /* > \brief \b ZLATME */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE ZLATME( N, DIST, ISEED, D, MODE, COND, DMAX, */
- /* RSIGN, */
- /* UPPER, SIM, DS, MODES, CONDS, KL, KU, ANORM, */
- /* A, */
- /* LDA, WORK, INFO ) */
-
- /* CHARACTER DIST, RSIGN, SIM, UPPER */
- /* INTEGER INFO, KL, KU, LDA, MODE, MODES, N */
- /* DOUBLE PRECISION ANORM, COND, CONDS */
- /* COMPLEX*16 DMAX */
- /* INTEGER ISEED( 4 ) */
- /* DOUBLE PRECISION DS( * ) */
- /* COMPLEX*16 A( LDA, * ), D( * ), WORK( * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > ZLATME generates random non-symmetric square matrices with */
- /* > specified eigenvalues for testing LAPACK programs. */
- /* > */
- /* > ZLATME operates by applying the following sequence of */
- /* > operations: */
- /* > */
- /* > 1. Set the diagonal to D, where D may be input or */
- /* > computed according to MODE, COND, DMAX, and RSIGN */
- /* > as described below. */
- /* > */
- /* > 2. If UPPER='T', the upper triangle of A is set to random values */
- /* > out of distribution DIST. */
- /* > */
- /* > 3. If SIM='T', A is multiplied on the left by a random matrix */
- /* > X, whose singular values are specified by DS, MODES, and */
- /* > CONDS, and on the right by X inverse. */
- /* > */
- /* > 4. If KL < N-1, the lower bandwidth is reduced to KL using */
- /* > Householder transformations. If KU < N-1, the upper */
- /* > bandwidth is reduced to KU. */
- /* > */
- /* > 5. If ANORM is not negative, the matrix is scaled to have */
- /* > maximum-element-norm ANORM. */
- /* > */
- /* > (Note: since the matrix cannot be reduced beyond Hessenberg form, */
- /* > no packing options are available.) */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The number of columns (or rows) of A. Not modified. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] DIST */
- /* > \verbatim */
- /* > DIST is CHARACTER*1 */
- /* > On entry, DIST specifies the type of distribution to be used */
- /* > to generate the random eigen-/singular values, and on the */
- /* > upper triangle (see UPPER). */
- /* > 'U' => UNIFORM( 0, 1 ) ( 'U' for uniform ) */
- /* > 'S' => UNIFORM( -1, 1 ) ( 'S' for symmetric ) */
- /* > 'N' => NORMAL( 0, 1 ) ( 'N' for normal ) */
- /* > 'D' => uniform on the complex disc |z| < 1. */
- /* > Not modified. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] ISEED */
- /* > \verbatim */
- /* > ISEED is INTEGER array, dimension ( 4 ) */
- /* > On entry ISEED specifies the seed of the random number */
- /* > generator. They should lie between 0 and 4095 inclusive, */
- /* > and ISEED(4) should be odd. The random number generator */
- /* > uses a linear congruential sequence limited to small */
- /* > integers, and so should produce machine independent */
- /* > random numbers. The values of ISEED are changed on */
- /* > exit, and can be used in the next call to ZLATME */
- /* > to continue the same random number sequence. */
- /* > Changed on exit. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] D */
- /* > \verbatim */
- /* > D is COMPLEX*16 array, dimension ( N ) */
- /* > This array is used to specify the eigenvalues of A. If */
- /* > MODE=0, then D is assumed to contain the eigenvalues */
- /* > otherwise they will be computed according to MODE, COND, */
- /* > DMAX, and RSIGN and placed in D. */
- /* > Modified if MODE is nonzero. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] MODE */
- /* > \verbatim */
- /* > MODE is INTEGER */
- /* > On entry this describes how the eigenvalues are to */
- /* > be specified: */
- /* > MODE = 0 means use D as input */
- /* > MODE = 1 sets D(1)=1 and D(2:N)=1.0/COND */
- /* > MODE = 2 sets D(1:N-1)=1 and D(N)=1.0/COND */
- /* > MODE = 3 sets D(I)=COND**(-(I-1)/(N-1)) */
- /* > MODE = 4 sets D(i)=1 - (i-1)/(N-1)*(1 - 1/COND) */
- /* > MODE = 5 sets D to random numbers in the range */
- /* > ( 1/COND , 1 ) such that their logarithms */
- /* > are uniformly distributed. */
- /* > MODE = 6 set D to random numbers from same distribution */
- /* > as the rest of the matrix. */
- /* > MODE < 0 has the same meaning as ABS(MODE), except that */
- /* > the order of the elements of D is reversed. */
- /* > Thus if MODE is between 1 and 4, D has entries ranging */
- /* > from 1 to 1/COND, if between -1 and -4, D has entries */
- /* > ranging from 1/COND to 1, */
- /* > Not modified. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] COND */
- /* > \verbatim */
- /* > COND is DOUBLE PRECISION */
- /* > On entry, this is used as described under MODE above. */
- /* > If used, it must be >= 1. Not modified. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] DMAX */
- /* > \verbatim */
- /* > DMAX is COMPLEX*16 */
- /* > If MODE is neither -6, 0 nor 6, the contents of D, as */
- /* > computed according to MODE and COND, will be scaled by */
- /* > DMAX / f2cmax(abs(D(i))). Note that DMAX need not be */
- /* > positive or real: if DMAX is negative or complex (or zero), */
- /* > D will be scaled by a negative or complex number (or zero). */
- /* > If RSIGN='F' then the largest (absolute) eigenvalue will be */
- /* > equal to DMAX. */
- /* > Not modified. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] RSIGN */
- /* > \verbatim */
- /* > RSIGN is CHARACTER*1 */
- /* > If MODE is not 0, 6, or -6, and RSIGN='T', then the */
- /* > elements of D, as computed according to MODE and COND, will */
- /* > be multiplied by a random complex number from the unit */
- /* > circle |z| = 1. If RSIGN='F', they will not be. RSIGN may */
- /* > only have the values 'T' or 'F'. */
- /* > Not modified. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] UPPER */
- /* > \verbatim */
- /* > UPPER is CHARACTER*1 */
- /* > If UPPER='T', then the elements of A above the diagonal */
- /* > will be set to random numbers out of DIST. If UPPER='F', */
- /* > they will not. UPPER may only have the values 'T' or 'F'. */
- /* > Not modified. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] SIM */
- /* > \verbatim */
- /* > SIM is CHARACTER*1 */
- /* > If SIM='T', then A will be operated on by a "similarity */
- /* > transform", i.e., multiplied on the left by a matrix X and */
- /* > on the right by X inverse. X = U S V, where U and V are */
- /* > random unitary matrices and S is a (diagonal) matrix of */
- /* > singular values specified by DS, MODES, and CONDS. If */
- /* > SIM='F', then A will not be transformed. */
- /* > Not modified. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] DS */
- /* > \verbatim */
- /* > DS is DOUBLE PRECISION array, dimension ( N ) */
- /* > This array is used to specify the singular values of X, */
- /* > in the same way that D specifies the eigenvalues of A. */
- /* > If MODE=0, the DS contains the singular values, which */
- /* > may not be zero. */
- /* > Modified if MODE is nonzero. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] MODES */
- /* > \verbatim */
- /* > MODES is INTEGER */
- /* > \endverbatim */
- /* > */
- /* > \param[in] CONDS */
- /* > \verbatim */
- /* > CONDS is DOUBLE PRECISION */
- /* > Similar to MODE and COND, but for specifying the diagonal */
- /* > of S. MODES=-6 and +6 are not allowed (since they would */
- /* > result in randomly ill-conditioned eigenvalues.) */
- /* > \endverbatim */
- /* > */
- /* > \param[in] KL */
- /* > \verbatim */
- /* > KL is INTEGER */
- /* > This specifies the lower bandwidth of the matrix. KL=1 */
- /* > specifies upper Hessenberg form. If KL is at least N-1, */
- /* > then A will have full lower bandwidth. */
- /* > Not modified. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] KU */
- /* > \verbatim */
- /* > KU is INTEGER */
- /* > This specifies the upper bandwidth of the matrix. KU=1 */
- /* > specifies lower Hessenberg form. If KU is at least N-1, */
- /* > then A will have full upper bandwidth; if KU and KL */
- /* > are both at least N-1, then A will be dense. Only one of */
- /* > KU and KL may be less than N-1. */
- /* > Not modified. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] ANORM */
- /* > \verbatim */
- /* > ANORM is DOUBLE PRECISION */
- /* > If ANORM is not negative, then A will be scaled by a non- */
- /* > negative real number to make the maximum-element-norm of A */
- /* > to be ANORM. */
- /* > Not modified. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] A */
- /* > \verbatim */
- /* > A is COMPLEX*16 array, dimension ( LDA, N ) */
- /* > On exit A is the desired test matrix. */
- /* > Modified. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDA */
- /* > \verbatim */
- /* > LDA is INTEGER */
- /* > LDA specifies the first dimension of A as declared in the */
- /* > calling program. LDA must be at least M. */
- /* > Not modified. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > WORK is COMPLEX*16 array, dimension ( 3*N ) */
- /* > Workspace. */
- /* > Modified. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > Error code. On exit, INFO will be set to one of the */
- /* > following values: */
- /* > 0 => normal return */
- /* > -1 => N negative */
- /* > -2 => DIST illegal string */
- /* > -5 => MODE not in range -6 to 6 */
- /* > -6 => COND less than 1.0, and MODE neither -6, 0 nor 6 */
- /* > -9 => RSIGN is not 'T' or 'F' */
- /* > -10 => UPPER is not 'T' or 'F' */
- /* > -11 => SIM is not 'T' or 'F' */
- /* > -12 => MODES=0 and DS has a zero singular value. */
- /* > -13 => MODES is not in the range -5 to 5. */
- /* > -14 => MODES is nonzero and CONDS is less than 1. */
- /* > -15 => KL is less than 1. */
- /* > -16 => KU is less than 1, or KL and KU are both less than */
- /* > N-1. */
- /* > -19 => LDA is less than M. */
- /* > 1 => Error return from ZLATM1 (computing D) */
- /* > 2 => Cannot scale to DMAX (f2cmax. eigenvalue is 0) */
- /* > 3 => Error return from DLATM1 (computing DS) */
- /* > 4 => Error return from ZLARGE */
- /* > 5 => Zero singular value from DLATM1. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date December 2016 */
-
- /* > \ingroup complex16_matgen */
-
- /* ===================================================================== */
- /* Subroutine */ void zlatme_(integer *n, char *dist, integer *iseed,
- doublecomplex *d__, integer *mode, doublereal *cond, doublecomplex *
- dmax__, char *rsign, char *upper, char *sim, doublereal *ds, integer *
- modes, doublereal *conds, integer *kl, integer *ku, doublereal *anorm,
- doublecomplex *a, integer *lda, doublecomplex *work, integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2;
- doublereal d__1, d__2;
- doublecomplex z__1, z__2;
-
- /* Local variables */
- logical bads;
- integer isim;
- doublereal temp;
- integer i__, j;
- doublecomplex alpha;
- extern logical lsame_(char *, char *);
- integer iinfo;
- doublereal tempa[1];
- integer icols;
- extern /* Subroutine */ void zgerc_(integer *, integer *, doublecomplex *,
- doublecomplex *, integer *, doublecomplex *, integer *,
- doublecomplex *, integer *);
- integer idist;
- extern /* Subroutine */ void zscal_(integer *, doublecomplex *,
- doublecomplex *, integer *), zgemv_(char *, integer *, integer *,
- doublecomplex *, doublecomplex *, integer *, doublecomplex *,
- integer *, doublecomplex *, doublecomplex *, integer *);
- integer irows;
- extern /* Subroutine */ void zcopy_(integer *, doublecomplex *, integer *,
- doublecomplex *, integer *), dlatm1_(integer *, doublereal *,
- integer *, integer *, integer *, doublereal *, integer *, integer
- *), zlatm1_(integer *, doublereal *, integer *, integer *,
- integer *, doublecomplex *, integer *, integer *);
- integer ic, jc, ir;
- doublereal ralpha;
- extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
- extern doublereal zlange_(char *, integer *, integer *, doublecomplex *,
- integer *, doublereal *);
- extern /* Subroutine */ void zdscal_(integer *, doublereal *,
- doublecomplex *, integer *), zlarge_(integer *, doublecomplex *,
- integer *, integer *, doublecomplex *, integer *), zlarfg_(
- integer *, doublecomplex *, doublecomplex *, integer *,
- doublecomplex *), zlacgv_(integer *, doublecomplex *, integer *);
- //extern /* Double Complex */ VOID zlarnd_(doublecomplex *, integer *,
- extern doublecomplex zlarnd_(integer *,
- integer *);
- integer irsign;
- extern /* Subroutine */ void zlaset_(char *, integer *, integer *,
- doublecomplex *, doublecomplex *, doublecomplex *, integer *);
- integer iupper;
- extern /* Subroutine */ void zlarnv_(integer *, integer *, integer *,
- doublecomplex *);
- doublecomplex xnorms;
- integer jcr;
- doublecomplex tau;
-
-
- /* -- LAPACK computational routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* December 2016 */
-
-
- /* ===================================================================== */
-
-
- /* 1) Decode and Test the input parameters. */
- /* Initialize flags & seed. */
-
- /* Parameter adjustments */
- --iseed;
- --d__;
- --ds;
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --work;
-
- /* Function Body */
- *info = 0;
-
- /* Quick return if possible */
-
- if (*n == 0) {
- return;
- }
-
- /* Decode DIST */
-
- if (lsame_(dist, "U")) {
- idist = 1;
- } else if (lsame_(dist, "S")) {
- idist = 2;
- } else if (lsame_(dist, "N")) {
- idist = 3;
- } else if (lsame_(dist, "D")) {
- idist = 4;
- } else {
- idist = -1;
- }
-
- /* Decode RSIGN */
-
- if (lsame_(rsign, "T")) {
- irsign = 1;
- } else if (lsame_(rsign, "F")) {
- irsign = 0;
- } else {
- irsign = -1;
- }
-
- /* Decode UPPER */
-
- if (lsame_(upper, "T")) {
- iupper = 1;
- } else if (lsame_(upper, "F")) {
- iupper = 0;
- } else {
- iupper = -1;
- }
-
- /* Decode SIM */
-
- if (lsame_(sim, "T")) {
- isim = 1;
- } else if (lsame_(sim, "F")) {
- isim = 0;
- } else {
- isim = -1;
- }
-
- /* Check DS, if MODES=0 and ISIM=1 */
-
- bads = FALSE_;
- if (*modes == 0 && isim == 1) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- if (ds[j] == 0.) {
- bads = TRUE_;
- }
- /* L10: */
- }
- }
-
- /* Set INFO if an error */
-
- if (*n < 0) {
- *info = -1;
- } else if (idist == -1) {
- *info = -2;
- } else if (abs(*mode) > 6) {
- *info = -5;
- } else if (*mode != 0 && abs(*mode) != 6 && *cond < 1.) {
- *info = -6;
- } else if (irsign == -1) {
- *info = -9;
- } else if (iupper == -1) {
- *info = -10;
- } else if (isim == -1) {
- *info = -11;
- } else if (bads) {
- *info = -12;
- } else if (isim == 1 && abs(*modes) > 5) {
- *info = -13;
- } else if (isim == 1 && *modes != 0 && *conds < 1.) {
- *info = -14;
- } else if (*kl < 1) {
- *info = -15;
- } else if (*ku < 1 || *ku < *n - 1 && *kl < *n - 1) {
- *info = -16;
- } else if (*lda < f2cmax(1,*n)) {
- *info = -19;
- }
-
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("ZLATME", &i__1, 6);
- return;
- }
-
- /* Initialize random number generator */
-
- for (i__ = 1; i__ <= 4; ++i__) {
- iseed[i__] = (i__1 = iseed[i__], abs(i__1)) % 4096;
- /* L20: */
- }
-
- if (iseed[4] % 2 != 1) {
- ++iseed[4];
- }
-
- /* 2) Set up diagonal of A */
-
- /* Compute D according to COND and MODE */
-
- zlatm1_(mode, cond, &irsign, &idist, &iseed[1], &d__[1], n, &iinfo);
- if (iinfo != 0) {
- *info = 1;
- return;
- }
- if (*mode != 0 && abs(*mode) != 6) {
-
- /* Scale by DMAX */
-
- temp = z_abs(&d__[1]);
- i__1 = *n;
- for (i__ = 2; i__ <= i__1; ++i__) {
- /* Computing MAX */
- d__1 = temp, d__2 = z_abs(&d__[i__]);
- temp = f2cmax(d__1,d__2);
- /* L30: */
- }
-
- if (temp > 0.) {
- z__1.r = dmax__->r / temp, z__1.i = dmax__->i / temp;
- alpha.r = z__1.r, alpha.i = z__1.i;
- } else {
- *info = 2;
- return;
- }
-
- zscal_(n, &alpha, &d__[1], &c__1);
-
- }
-
- zlaset_("Full", n, n, &c_b1, &c_b1, &a[a_offset], lda);
- i__1 = *lda + 1;
- zcopy_(n, &d__[1], &c__1, &a[a_offset], &i__1);
-
- /* 3) If UPPER='T', set upper triangle of A to random numbers. */
-
- if (iupper != 0) {
- i__1 = *n;
- for (jc = 2; jc <= i__1; ++jc) {
- i__2 = jc - 1;
- zlarnv_(&idist, &iseed[1], &i__2, &a[jc * a_dim1 + 1]);
- /* L40: */
- }
- }
-
- /* 4) If SIM='T', apply similarity transformation. */
-
- /* -1 */
- /* Transform is X A X , where X = U S V, thus */
-
- /* it is U S V A V' (1/S) U' */
-
- if (isim != 0) {
-
- /* Compute S (singular values of the eigenvector matrix) */
- /* according to CONDS and MODES */
-
- dlatm1_(modes, conds, &c__0, &c__0, &iseed[1], &ds[1], n, &iinfo);
- if (iinfo != 0) {
- *info = 3;
- return;
- }
-
- /* Multiply by V and V' */
-
- zlarge_(n, &a[a_offset], lda, &iseed[1], &work[1], &iinfo);
- if (iinfo != 0) {
- *info = 4;
- return;
- }
-
- /* Multiply by S and (1/S) */
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- zdscal_(n, &ds[j], &a[j + a_dim1], lda);
- if (ds[j] != 0.) {
- d__1 = 1. / ds[j];
- zdscal_(n, &d__1, &a[j * a_dim1 + 1], &c__1);
- } else {
- *info = 5;
- return;
- }
- /* L50: */
- }
-
- /* Multiply by U and U' */
-
- zlarge_(n, &a[a_offset], lda, &iseed[1], &work[1], &iinfo);
- if (iinfo != 0) {
- *info = 4;
- return;
- }
- }
-
- /* 5) Reduce the bandwidth. */
-
- if (*kl < *n - 1) {
-
- /* Reduce bandwidth -- kill column */
-
- i__1 = *n - 1;
- for (jcr = *kl + 1; jcr <= i__1; ++jcr) {
- ic = jcr - *kl;
- irows = *n + 1 - jcr;
- icols = *n + *kl - jcr;
-
- zcopy_(&irows, &a[jcr + ic * a_dim1], &c__1, &work[1], &c__1);
- xnorms.r = work[1].r, xnorms.i = work[1].i;
- zlarfg_(&irows, &xnorms, &work[2], &c__1, &tau);
- d_cnjg(&z__1, &tau);
- tau.r = z__1.r, tau.i = z__1.i;
- work[1].r = 1., work[1].i = 0.;
- //zlarnd_(&z__1, &c__5, &iseed[1]);
- z__1=zlarnd_(&c__5, &iseed[1]);
- alpha.r = z__1.r, alpha.i = z__1.i;
-
- zgemv_("C", &irows, &icols, &c_b2, &a[jcr + (ic + 1) * a_dim1],
- lda, &work[1], &c__1, &c_b1, &work[irows + 1], &c__1);
- z__1.r = -tau.r, z__1.i = -tau.i;
- zgerc_(&irows, &icols, &z__1, &work[1], &c__1, &work[irows + 1], &
- c__1, &a[jcr + (ic + 1) * a_dim1], lda);
-
- zgemv_("N", n, &irows, &c_b2, &a[jcr * a_dim1 + 1], lda, &work[1],
- &c__1, &c_b1, &work[irows + 1], &c__1);
- d_cnjg(&z__2, &tau);
- z__1.r = -z__2.r, z__1.i = -z__2.i;
- zgerc_(n, &irows, &z__1, &work[irows + 1], &c__1, &work[1], &c__1,
- &a[jcr * a_dim1 + 1], lda);
-
- i__2 = jcr + ic * a_dim1;
- a[i__2].r = xnorms.r, a[i__2].i = xnorms.i;
- i__2 = irows - 1;
- zlaset_("Full", &i__2, &c__1, &c_b1, &c_b1, &a[jcr + 1 + ic *
- a_dim1], lda);
-
- i__2 = icols + 1;
- zscal_(&i__2, &alpha, &a[jcr + ic * a_dim1], lda);
- d_cnjg(&z__1, &alpha);
- zscal_(n, &z__1, &a[jcr * a_dim1 + 1], &c__1);
- /* L60: */
- }
- } else if (*ku < *n - 1) {
-
- /* Reduce upper bandwidth -- kill a row at a time. */
-
- i__1 = *n - 1;
- for (jcr = *ku + 1; jcr <= i__1; ++jcr) {
- ir = jcr - *ku;
- irows = *n + *ku - jcr;
- icols = *n + 1 - jcr;
-
- zcopy_(&icols, &a[ir + jcr * a_dim1], lda, &work[1], &c__1);
- xnorms.r = work[1].r, xnorms.i = work[1].i;
- zlarfg_(&icols, &xnorms, &work[2], &c__1, &tau);
- d_cnjg(&z__1, &tau);
- tau.r = z__1.r, tau.i = z__1.i;
- work[1].r = 1., work[1].i = 0.;
- i__2 = icols - 1;
- zlacgv_(&i__2, &work[2], &c__1);
- //zlarnd_(&z__1, &c__5, &iseed[1]);
- z__1 = zlarnd_(&c__5, &iseed[1]);
- alpha.r = z__1.r, alpha.i = z__1.i;
-
- zgemv_("N", &irows, &icols, &c_b2, &a[ir + 1 + jcr * a_dim1], lda,
- &work[1], &c__1, &c_b1, &work[icols + 1], &c__1);
- z__1.r = -tau.r, z__1.i = -tau.i;
- zgerc_(&irows, &icols, &z__1, &work[icols + 1], &c__1, &work[1], &
- c__1, &a[ir + 1 + jcr * a_dim1], lda);
-
- zgemv_("C", &icols, n, &c_b2, &a[jcr + a_dim1], lda, &work[1], &
- c__1, &c_b1, &work[icols + 1], &c__1);
- d_cnjg(&z__2, &tau);
- z__1.r = -z__2.r, z__1.i = -z__2.i;
- zgerc_(&icols, n, &z__1, &work[1], &c__1, &work[icols + 1], &c__1,
- &a[jcr + a_dim1], lda);
-
- i__2 = ir + jcr * a_dim1;
- a[i__2].r = xnorms.r, a[i__2].i = xnorms.i;
- i__2 = icols - 1;
- zlaset_("Full", &c__1, &i__2, &c_b1, &c_b1, &a[ir + (jcr + 1) *
- a_dim1], lda);
-
- i__2 = irows + 1;
- zscal_(&i__2, &alpha, &a[ir + jcr * a_dim1], &c__1);
- d_cnjg(&z__1, &alpha);
- zscal_(n, &z__1, &a[jcr + a_dim1], lda);
- /* L70: */
- }
- }
-
- /* Scale the matrix to have norm ANORM */
-
- if (*anorm >= 0.) {
- temp = zlange_("M", n, n, &a[a_offset], lda, tempa);
- if (temp > 0.) {
- ralpha = *anorm / temp;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- zdscal_(n, &ralpha, &a[j * a_dim1 + 1], &c__1);
- /* L80: */
- }
- }
- }
-
- return;
-
- /* End of ZLATME */
-
- } /* zlatme_ */
|