|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef int logical;
- typedef short int shortlogical;
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle_() continue;
- #define myceiling_(w) {ceil(w)}
- #define myhuge_(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc_(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
- #define F2C_proc_par_types 1
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
-
- /* Table of constant values */
-
- static doublecomplex c_b1 = {0.,0.};
- static doublecomplex c_b2 = {1.,0.};
- static integer c__3 = 3;
- static integer c__1 = 1;
-
- /* > \brief \b ZLAROR */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE ZLAROR( SIDE, INIT, M, N, A, LDA, ISEED, X, INFO ) */
-
- /* CHARACTER INIT, SIDE */
- /* INTEGER INFO, LDA, M, N */
- /* INTEGER ISEED( 4 ) */
- /* COMPLEX*16 A( LDA, * ), X( * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > ZLAROR pre- or post-multiplies an M by N matrix A by a random */
- /* > unitary matrix U, overwriting A. A may optionally be */
- /* > initialized to the identity matrix before multiplying by U. */
- /* > U is generated using the method of G.W. Stewart */
- /* > ( SIAM J. Numer. Anal. 17, 1980, pp. 403-409 ). */
- /* > (BLAS-2 version) */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] SIDE */
- /* > \verbatim */
- /* > SIDE is CHARACTER*1 */
- /* > SIDE specifies whether A is multiplied on the left or right */
- /* > by U. */
- /* > SIDE = 'L' Multiply A on the left (premultiply) by U */
- /* > SIDE = 'R' Multiply A on the right (postmultiply) by UC> SIDE = 'C' Multiply A on the lef
- t by U and the right by UC> SIDE = 'T' Multiply A on the left by U and the right by U' */
- /* > Not modified. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] INIT */
- /* > \verbatim */
- /* > INIT is CHARACTER*1 */
- /* > INIT specifies whether or not A should be initialized to */
- /* > the identity matrix. */
- /* > INIT = 'I' Initialize A to (a section of) the */
- /* > identity matrix before applying U. */
- /* > INIT = 'N' No initialization. Apply U to the */
- /* > input matrix A. */
- /* > */
- /* > INIT = 'I' may be used to generate square (i.e., unitary) */
- /* > or rectangular orthogonal matrices (orthogonality being */
- /* > in the sense of ZDOTC): */
- /* > */
- /* > For square matrices, M=N, and SIDE many be either 'L' or */
- /* > 'R'; the rows will be orthogonal to each other, as will the */
- /* > columns. */
- /* > For rectangular matrices where M < N, SIDE = 'R' will */
- /* > produce a dense matrix whose rows will be orthogonal and */
- /* > whose columns will not, while SIDE = 'L' will produce a */
- /* > matrix whose rows will be orthogonal, and whose first M */
- /* > columns will be orthogonal, the remaining columns being */
- /* > zero. */
- /* > For matrices where M > N, just use the previous */
- /* > explanation, interchanging 'L' and 'R' and "rows" and */
- /* > "columns". */
- /* > */
- /* > Not modified. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] M */
- /* > \verbatim */
- /* > M is INTEGER */
- /* > Number of rows of A. Not modified. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > Number of columns of A. Not modified. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] A */
- /* > \verbatim */
- /* > A is COMPLEX*16 array, dimension ( LDA, N ) */
- /* > Input and output array. Overwritten by U A ( if SIDE = 'L' ) */
- /* > or by A U ( if SIDE = 'R' ) */
- /* > or by U A U* ( if SIDE = 'C') */
- /* > or by U A U' ( if SIDE = 'T') on exit. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDA */
- /* > \verbatim */
- /* > LDA is INTEGER */
- /* > Leading dimension of A. Must be at least MAX ( 1, M ). */
- /* > Not modified. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] ISEED */
- /* > \verbatim */
- /* > ISEED is INTEGER array, dimension ( 4 ) */
- /* > On entry ISEED specifies the seed of the random number */
- /* > generator. The array elements should be between 0 and 4095; */
- /* > if not they will be reduced mod 4096. Also, ISEED(4) must */
- /* > be odd. The random number generator uses a linear */
- /* > congruential sequence limited to small integers, and so */
- /* > should produce machine independent random numbers. The */
- /* > values of ISEED are changed on exit, and can be used in the */
- /* > next call to ZLAROR to continue the same random number */
- /* > sequence. */
- /* > Modified. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] X */
- /* > \verbatim */
- /* > X is COMPLEX*16 array, dimension ( 3*MAX( M, N ) ) */
- /* > Workspace. Of length: */
- /* > 2*M + N if SIDE = 'L', */
- /* > 2*N + M if SIDE = 'R', */
- /* > 3*N if SIDE = 'C' or 'T'. */
- /* > Modified. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > An error flag. It is set to: */
- /* > 0 if no error. */
- /* > 1 if ZLARND returned a bad random number (installation */
- /* > problem) */
- /* > -1 if SIDE is not L, R, C, or T. */
- /* > -3 if M is negative. */
- /* > -4 if N is negative or if SIDE is C or T and N is not equal */
- /* > to M. */
- /* > -6 if LDA is less than M. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date December 2016 */
-
- /* > \ingroup complex16_matgen */
-
- /* ===================================================================== */
- /* Subroutine */ void zlaror_(char *side, char *init, integer *m, integer *n,
- doublecomplex *a, integer *lda, integer *iseed, doublecomplex *x,
- integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3;
- doublecomplex z__1, z__2;
-
- /* Local variables */
- integer kbeg, jcol;
- doublereal xabs;
- integer irow, j;
- extern logical lsame_(char *, char *);
- doublecomplex csign;
- extern /* Subroutine */ void zgerc_(integer *, integer *, doublecomplex *,
- doublecomplex *, integer *, doublecomplex *, integer *,
- doublecomplex *, integer *), zscal_(integer *, doublecomplex *,
- doublecomplex *, integer *);
- integer ixfrm;
- extern /* Subroutine */ void zgemv_(char *, integer *, integer *,
- doublecomplex *, doublecomplex *, integer *, doublecomplex *,
- integer *, doublecomplex *, doublecomplex *, integer *);
- integer itype, nxfrm;
- doublereal xnorm;
- extern doublereal dznrm2_(integer *, doublecomplex *, integer *);
- extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
- doublereal factor;
- extern /* Subroutine */ void zlacgv_(integer *, doublecomplex *, integer *)
- ;
- //extern /* Double Complex */ VOID zlarnd_(doublecomplex *, integer *,
- extern doublecomplex zlarnd_(integer *,
- integer *);
- extern /* Subroutine */ void zlaset_(char *, integer *, integer *,
- doublecomplex *, doublecomplex *, doublecomplex *, integer *);
- doublecomplex xnorms;
-
-
- /* -- LAPACK auxiliary routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* December 2016 */
-
-
- /* ===================================================================== */
-
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --iseed;
- --x;
-
- /* Function Body */
- *info = 0;
- if (*n == 0 || *m == 0) {
- return;
- }
-
- itype = 0;
- if (lsame_(side, "L")) {
- itype = 1;
- } else if (lsame_(side, "R")) {
- itype = 2;
- } else if (lsame_(side, "C")) {
- itype = 3;
- } else if (lsame_(side, "T")) {
- itype = 4;
- }
-
- /* Check for argument errors. */
-
- if (itype == 0) {
- *info = -1;
- } else if (*m < 0) {
- *info = -3;
- } else if (*n < 0 || itype == 3 && *n != *m) {
- *info = -4;
- } else if (*lda < *m) {
- *info = -6;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("ZLAROR", &i__1, 6);
- return;
- }
-
- if (itype == 1) {
- nxfrm = *m;
- } else {
- nxfrm = *n;
- }
-
- /* Initialize A to the identity matrix if desired */
-
- if (lsame_(init, "I")) {
- zlaset_("Full", m, n, &c_b1, &c_b2, &a[a_offset], lda);
- }
-
- /* If no rotation possible, still multiply by */
- /* a random complex number from the circle |x| = 1 */
-
- /* 2) Compute Rotation by computing Householder */
- /* Transformations H(2), H(3), ..., H(n). Note that the */
- /* order in which they are computed is irrelevant. */
-
- i__1 = nxfrm;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j;
- x[i__2].r = 0., x[i__2].i = 0.;
- /* L10: */
- }
-
- i__1 = nxfrm;
- for (ixfrm = 2; ixfrm <= i__1; ++ixfrm) {
- kbeg = nxfrm - ixfrm + 1;
-
- /* Generate independent normal( 0, 1 ) random numbers */
-
- i__2 = nxfrm;
- for (j = kbeg; j <= i__2; ++j) {
- i__3 = j;
- //zlarnd_(&z__1, &c__3, &iseed[1]);
- z__1=zlarnd_(&c__3, &iseed[1]);
- x[i__3].r = z__1.r, x[i__3].i = z__1.i;
- /* L20: */
- }
-
- /* Generate a Householder transformation from the random vector X */
-
- xnorm = dznrm2_(&ixfrm, &x[kbeg], &c__1);
- xabs = z_abs(&x[kbeg]);
- if (xabs != 0.) {
- i__2 = kbeg;
- z__1.r = x[i__2].r / xabs, z__1.i = x[i__2].i / xabs;
- csign.r = z__1.r, csign.i = z__1.i;
- } else {
- csign.r = 1., csign.i = 0.;
- }
- z__1.r = xnorm * csign.r, z__1.i = xnorm * csign.i;
- xnorms.r = z__1.r, xnorms.i = z__1.i;
- i__2 = nxfrm + kbeg;
- z__1.r = -csign.r, z__1.i = -csign.i;
- x[i__2].r = z__1.r, x[i__2].i = z__1.i;
- factor = xnorm * (xnorm + xabs);
- if (abs(factor) < 1e-20) {
- *info = 1;
- i__2 = -(*info);
- xerbla_("ZLAROR", &i__2, 6);
- return;
- } else {
- factor = 1. / factor;
- }
- i__2 = kbeg;
- i__3 = kbeg;
- z__1.r = x[i__3].r + xnorms.r, z__1.i = x[i__3].i + xnorms.i;
- x[i__2].r = z__1.r, x[i__2].i = z__1.i;
-
- /* Apply Householder transformation to A */
-
- if (itype == 1 || itype == 3 || itype == 4) {
-
- /* Apply H(k) on the left of A */
-
- zgemv_("C", &ixfrm, n, &c_b2, &a[kbeg + a_dim1], lda, &x[kbeg], &
- c__1, &c_b1, &x[(nxfrm << 1) + 1], &c__1);
- z__2.r = factor, z__2.i = 0.;
- z__1.r = -z__2.r, z__1.i = -z__2.i;
- zgerc_(&ixfrm, n, &z__1, &x[kbeg], &c__1, &x[(nxfrm << 1) + 1], &
- c__1, &a[kbeg + a_dim1], lda);
-
- }
-
- if (itype >= 2 && itype <= 4) {
-
- /* Apply H(k)* (or H(k)') on the right of A */
-
- if (itype == 4) {
- zlacgv_(&ixfrm, &x[kbeg], &c__1);
- }
-
- zgemv_("N", m, &ixfrm, &c_b2, &a[kbeg * a_dim1 + 1], lda, &x[kbeg]
- , &c__1, &c_b1, &x[(nxfrm << 1) + 1], &c__1);
- z__2.r = factor, z__2.i = 0.;
- z__1.r = -z__2.r, z__1.i = -z__2.i;
- zgerc_(m, &ixfrm, &z__1, &x[(nxfrm << 1) + 1], &c__1, &x[kbeg], &
- c__1, &a[kbeg * a_dim1 + 1], lda);
-
- }
- /* L30: */
- }
-
- //zlarnd_(&z__1, &c__3, &iseed[1]);
- z__1=zlarnd_(&c__3, &iseed[1]);
- x[1].r = z__1.r, x[1].i = z__1.i;
- xabs = z_abs(&x[1]);
- if (xabs != 0.) {
- z__1.r = x[1].r / xabs, z__1.i = x[1].i / xabs;
- csign.r = z__1.r, csign.i = z__1.i;
- } else {
- csign.r = 1., csign.i = 0.;
- }
- i__1 = nxfrm << 1;
- x[i__1].r = csign.r, x[i__1].i = csign.i;
-
- /* Scale the matrix A by D. */
-
- if (itype == 1 || itype == 3 || itype == 4) {
- i__1 = *m;
- for (irow = 1; irow <= i__1; ++irow) {
- d_cnjg(&z__1, &x[nxfrm + irow]);
- zscal_(n, &z__1, &a[irow + a_dim1], lda);
- /* L40: */
- }
- }
-
- if (itype == 2 || itype == 3) {
- i__1 = *n;
- for (jcol = 1; jcol <= i__1; ++jcol) {
- zscal_(m, &x[nxfrm + jcol], &a[jcol * a_dim1 + 1], &c__1);
- /* L50: */
- }
- }
-
- if (itype == 4) {
- i__1 = *n;
- for (jcol = 1; jcol <= i__1; ++jcol) {
- d_cnjg(&z__1, &x[nxfrm + jcol]);
- zscal_(m, &z__1, &a[jcol * a_dim1 + 1], &c__1);
- /* L60: */
- }
- }
- return;
-
- /* End of ZLAROR */
-
- } /* zlaror_ */
|