|
- SUBROUTINE SGETRI( N, A, LDA, IPIV, WORK, LWORK, INFO )
- *
- * -- LAPACK routine (version 3.0) --
- * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- * Courant Institute, Argonne National Lab, and Rice University
- * June 30, 1999
- *
- * .. Scalar Arguments ..
- INTEGER INFO, LDA, LWORK, N
- * ..
- * .. Array Arguments ..
- INTEGER IPIV( * )
- REAL A( LDA, * ), WORK( * )
- * ..
- *
- * Purpose
- * =======
- *
- * SGETRI computes the inverse of a matrix using the LU factorization
- * computed by SGETRF.
- *
- * This method inverts U and then computes inv(A) by solving the system
- * inv(A)*L = inv(U) for inv(A).
- *
- * Arguments
- * =========
- *
- * N (input) INTEGER
- * The order of the matrix A. N >= 0.
- *
- * A (input/output) REAL array, dimension (LDA,N)
- * On entry, the factors L and U from the factorization
- * A = P*L*U as computed by SGETRF.
- * On exit, if INFO = 0, the inverse of the original matrix A.
- *
- * LDA (input) INTEGER
- * The leading dimension of the array A. LDA >= max(1,N).
- *
- * IPIV (input) INTEGER array, dimension (N)
- * The pivot indices from SGETRF; for 1<=i<=N, row i of the
- * matrix was interchanged with row IPIV(i).
- *
- * WORK (workspace/output) REAL array, dimension (LWORK)
- * On exit, if INFO=0, then WORK(1) returns the optimal LWORK.
- *
- * LWORK (input) INTEGER
- * The dimension of the array WORK. LWORK >= max(1,N).
- * For optimal performance LWORK >= N*NB, where NB is
- * the optimal blocksize returned by ILAENV.
- *
- * If LWORK = -1, then a workspace query is assumed; the routine
- * only calculates the optimal size of the WORK array, returns
- * this value as the first entry of the WORK array, and no error
- * message related to LWORK is issued by XERBLA.
- *
- * INFO (output) INTEGER
- * = 0: successful exit
- * < 0: if INFO = -i, the i-th argument had an illegal value
- * > 0: if INFO = i, U(i,i) is exactly zero; the matrix is
- * singular and its inverse could not be computed.
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ZERO, ONE
- PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL LQUERY
- INTEGER I, IWS, J, JB, JJ, JP, LDWORK, LWKOPT, NB,
- $ NBMIN, NN
- * ..
- * .. External Functions ..
- INTEGER ILAENV
- EXTERNAL ILAENV
- * ..
- * .. External Subroutines ..
- EXTERNAL SGEMM, SGEMV, SSWAP, STRSM, STRTRI, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, MIN
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- NB = ILAENV( 1, 'SGETRI', ' ', N, -1, -1, -1 )
- LWKOPT = N*NB
- WORK( 1 ) = LWKOPT
- LQUERY = ( LWORK.EQ.-1 )
- IF( N.LT.0 ) THEN
- INFO = -1
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -3
- ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
- INFO = -6
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'SGETRI', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 )
- $ RETURN
- *
- * Form inv(U). If INFO > 0 from STRTRI, then U is singular,
- * and the inverse is not computed.
- *
- CALL STRTRI( 'Upper', 'Non-unit', N, A, LDA, INFO )
- IF( INFO.GT.0 )
- $ RETURN
- *
- NBMIN = 2
- LDWORK = N
- IF( NB.GT.1 .AND. NB.LT.N ) THEN
- IWS = MAX( LDWORK*NB, 1 )
- IF( LWORK.LT.IWS ) THEN
- NB = LWORK / LDWORK
- NBMIN = MAX( 2, ILAENV( 2, 'SGETRI', ' ', N, -1, -1, -1 ) )
- END IF
- ELSE
- IWS = N
- END IF
- *
- * Solve the equation inv(A)*L = inv(U) for inv(A).
- *
- IF( NB.LT.NBMIN .OR. NB.GE.N ) THEN
- *
- * Use unblocked code.
- *
- DO 20 J = N, 1, -1
- *
- * Copy current column of L to WORK and replace with zeros.
- *
- DO 10 I = J + 1, N
- WORK( I ) = A( I, J )
- A( I, J ) = ZERO
- 10 CONTINUE
- *
- * Compute current column of inv(A).
- *
- IF( J.LT.N )
- $ CALL SGEMV( 'No transpose', N, N-J, -ONE, A( 1, J+1 ),
- $ LDA, WORK( J+1 ), 1, ONE, A( 1, J ), 1 )
- 20 CONTINUE
- ELSE
- *
- * Use blocked code.
- *
- NN = ( ( N-1 ) / NB )*NB + 1
- DO 50 J = NN, 1, -NB
- JB = MIN( NB, N-J+1 )
- *
- * Copy current block column of L to WORK and replace with
- * zeros.
- *
- DO 40 JJ = J, J + JB - 1
- DO 30 I = JJ + 1, N
- WORK( I+( JJ-J )*LDWORK ) = A( I, JJ )
- A( I, JJ ) = ZERO
- 30 CONTINUE
- 40 CONTINUE
- *
- * Compute current block column of inv(A).
- *
- IF( J+JB.LE.N )
- $ CALL SGEMM( 'No transpose', 'No transpose', N, JB,
- $ N-J-JB+1, -ONE, A( 1, J+JB ), LDA,
- $ WORK( J+JB ), LDWORK, ONE, A( 1, J ), LDA )
- CALL STRSM( 'Right', 'Lower', 'No transpose', 'Unit', N, JB,
- $ ONE, WORK( J ), LDWORK, A( 1, J ), LDA )
- 50 CONTINUE
- END IF
- *
- * Apply column interchanges.
- *
- DO 60 J = N - 1, 1, -1
- JP = IPIV( J )
- IF( JP.NE.J )
- $ CALL SSWAP( N, A( 1, J ), 1, A( 1, JP ), 1 )
- 60 CONTINUE
- *
- WORK( 1 ) = IWS
- RETURN
- *
- * End of SGETRI
- *
- END
|